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Abstract

Mohr’s circle is a convenient geometric method to solve two-dimensional stress and strain
problems in geotechnical engineering and materials engineering. The pole point is such a
special point that can help readily find stresses and strains on any specified plane by using
a diagram instead of complex computations. This paper first presents two conventional
pole point methods of a Mohr’s strain circle, i.e., the parallel line method and the normal
line method. A new method of determining the pole point of strain, called the ray method,
is then proposed. It was found that the parallel line method and the normal line method
are two special cases of the ray method; however, the parallel line method was proved the
most efficient way to determine the strains for a specified plane. The uniqueness of the pole
point was proved by using an indirect proof; and the pole point method was verified by a
theoretical method. Results also show that Mohr’s strain and stress circles can be drawn in
a concentric circle. Based on the relationship between the pole points of stress and strain,
any relatively complex stress and strain states can be determined by using the pole point

method rather than using the theoretical method.

1. Introduction

Mohr’s law is very useful to tackle stress and strain
problems in materials engineering. The German bridge engineer
Karl Culmann (1821-1881) is the first to put forward the
graphical means of representing stresses (Timoshenko, 1983).
He introduced the stress circle in considering longitudinal
and vertical stresses in horizontal beams during bending,
and it is a precursor and a particular case of Mohr’s circle
analysis. Some details on constructing Culmann’s circle of
stress are referred to Timoshenko (1983) and Allison (1984).
In 1882, German engineer Chrisitan Otto Mohr extended the
stress circle to the three-dimensional case and proposed the
strength criterion of the stress circle (Allison, 1984). The
circle is called Mohr’s circle of plane stress worldwide. In
addition, Culmann constructed a point on the Mohr’s circle
for a specific element from which draw a straight line parallel
to an arbitrary plane on the element. The coordinates of the
intersection of the parallel line with the Mohr’s circle represent
the stresses acting on the plane (Cutler & Elliott, 1983). The
point is now called the pole point. It has been proved that
the pole point method can easily obtain the stresses of a soil
element instead of using complex formulae (Li et al., 2013).

In addition, it has been proved that Mohr’s circle diagram
and the pole point method are widely used to solve two-
dimensional and three-dimensional stress and strain problems
in geotechnical engineering (Means, 1983; Lisle & Ragan,
1988; Lisle & Robinson, 1995; Treagus, 1995; Bui et al., 2014).
Many soil mechanics books illustrate that the pole point for
Mohr’s stress circle can be obtained by using the parallel line
method (Terzaghi, 1943; Lambe & Whitman, 1969; Budhu,
2011; Das, 2010; Holtz & Kovacs, 1981).

A pole is a unique point located on the circumference
of Mohr’s circle. If a line is drawn through the pole parallel
to a given plane, the point of intersection of this line and
Mohr’s circle will give the stresses on the plane. The
procedure for finding the pole is shown in Figure 1. Point B
on Mohr’s circle represents the stress conditions on plane
AB (Figure 1a). If a line is drawn through B parallel to AB,
it will intersect Mohr’s circle at P, point P is the pole for
Mohr’s circle. We could also have found pole P by drawing
a line through C parallel to plane AC. To find the stresses on
plane BC, we draw a line through P parallel to BC, it will
intersect Mohr’s circle at F, and the coordinates of point F
will give the normal and shear stresses on plane 4B.
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Figure 1. Pole method of finding stresses on an inclined plane (a) stress element, and (b) corresponding Mohr’s circle (Das, 2010).

Lietal. (2013) verified the uniqueness of the pole point
for Mohr’s circle of stress by using an indirect proof and
pointed out that the positive shear stress should conform to a
counterclockwise rotation for an infinitesimal soil element.
However, the pole point for Mohr’s circle of strain has not been
addressed in the aforementioned literature. By now, for a soil
element, the most popular method in obtaining the strain state
of an arbitrary plane is the rotation method (Gere & Goodno,
2009; Hearn, 1997; Hibbeler, 2010; Beer et al., 2012).

This paper first presents two methods that are the parallel
line method and the normal line method to determine the pole
point for strain. The ray method is then proposed to obtain
the pole point of the Mohr’s Circle of strain. In addition, the
uniqueness of the pole points obtained by the three methods
is verified. Based on the relationship between pole points
of stress and strain, the advantage of the pole point method
in obtaining the complex stress and strain states of a soil
element is shown by using an example.

2. Pole point methods for Mohr’s strain circle

Considering a soil element subjected to the two-
dimensional stresses (Figure 2a), we should first define a sign
convention for the normal and shear strains to determine the
pole point of the Mohr’s strain circle. As shown in Figure 2b,
a positive value for a normal strain component indicates
compression in the corresponding direction, otherwise a
negative value for tension. In addition, the shear strain is
considered positive if the interior angle diminishes under
shear stresses.

2.1 The parallel line method

The following steps are required to obtain the pole point
of the Mohr’s strain circle by using the parallel line method:

1. Establish a coordinate system. The abscissa and
ordinate represent the normal strain € and half the
value of the shear strain, y/2, respectively (Figure 2¢).

2. Plot two reference points C (g, v, /2) and D (e,
'ny/z) in Figure 2a where ¢ _and ny/Z represent the
normal and shear strains of plane ad, respectively and
¢ and -y_/2 represent the normal and shear strains
of plane cd. Then draw a Mohr’s strain circle using
line CD as its diameter.

3. Draw a line from point C parallel to ad (Figure 2c).
The point where the parallel line intersects the Mohr’s
circle is the pole point P. In addition, the intersection
of the Mohr’s circle with the line parallel to line cd
from point D can also establish the same pole point P.

To obtain the strain state of a specific plane de
(Figure 2b), a line parallel to plane de from the pole point
P is drawn (Figure 2c). The intersection of the line with the
Mohr’s strain circle is point £, and the coordinates of point
E denote the normal and shear strains of plane de.

2.2 The normal line method

The following steps are required to obtain the pole point
of the Mohr’s strain circle by using the normal line method:
1. Asshown in Figure 2c, a straight line from point C
is pictured parallel to the normal line of plane ad
(denoted as n, in Figure 2b), and intersection of the

line with the Mohr’s circle is the pole point P’.

2. To obtain the normal and shear strains of plane de, a
line is plotted from point P’ parallel to the normal line
of plane de (denoted as n, in Figure 2b). The parallel
line intersects the Mohr’s strain circle at point £, and
its coordinates represent the strain state of plane de.

Since line PC (Figure 2¢) and plane ad (Figure 2a) are
parallel, line PC is perpendicular to the line P’C, indicating
that the inscribed angle of arc PP’ equals 90°. Therefore, the
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Figure 2. Plane strain element of soil and the Mohr’s strain circle for the parallel line method. (a) Stress element, (b) Strain element,

and (c) Mohr’s strain circle.

central angle of arc PP’ equals 180°, indicating that pole points
Pand P’ are on the same diameter of the Mohr’s strain circle.

2.3 The ray method

A new method called the ray method is first proposed
to define the pole point:

1. Asshown in Figure 3a, an arbitrary point fon plane
bc is positioned. Then a ray fg is obtained by rotating
the line fb about point f'clockwise to angle a.

2. A line is drawn from C parallel to ray fg, which
intersects 4 the Mohr’s strain circle at the pole point
P (Figure 3b).

3. To obtain the strains of the plane de, an arbitrary
point 4 is first selected on this plane, and ray Ai is
obtained by rotating line dh about / clockwise to
angle a (Figure 3a). As shown in Figure 3b, a straight
line is then drawn from the pole point P parallel to
the ray 4i, which intersects the Mohr’s strain circle
at point £ 7, reading the strain state of plane de.

Comparing Figures 2 and 3, when the angle a equals
0°, the pole point P~ will coincide with point P, i. e., the ray
method becomes the parallel method. Furthermore, when the
angle a equals 90°, the pole point P may coincide with the
point P’, indicating that the ray method is equivalent to the

normal line method. From this viewpoint, the parallel line and
normal line methods are two special cases of the ray method.

In addition, it can be also concluded that the parallel
line method is easier to obtain the strain and stress states of
a soil element.

3. Uniqueness of the pole point of Mohr’s
strain circle

Since the parallel line and normal line methods are
two special cases of the ray method, the uniqueness of the
pole point obtained by the ray method is proved by using
an indirect method herein.

As shown in Figure 4a, the maximum and minimum
principal strains of the soil element are ¢, and ¢,, and the
normal and the shear strain of a specific plane de are g, and
yﬁ/2. In addition, the included angle between ray dk and
plane de, as well as the included angle between ray ch and
plane bc, are 8 counterclockwise. Then establish a coordinate
system and construct points 4 and B with the coordinates of
(¢,,0) and (¢, 0), respectively. Therefore, the corresponding
Mohr s strain circle for the soil element can be drawn using
line 4B as its diameter. (Figure 4b). Points 4 and B on the
Mohr’s circle represent the strain state of planes ad and cd,
respectively and point C denotes the strain state of plane de.
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Figure 3. Plane strain element of soil and the Mohr’s strain circle for the ray method. (a) Stress element, and (b) Mohr’s strain circle.
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Figure 4. Plane strain element of soil and corresponding Mohr’s strain circle. (a) Stress element, and (b) Mohr’s strain circle.

A straight line is drawn from point C parallel to line
dk, which intersects the Mohr’s strain circle at pole point
P. The pole point P’ can also be determined by drawing a
straight line from point A parallel to line ch (Figure 4b).
Provided point P overlaps point P’, the pole point is said to
be unique. The proof is as follows:

In Figure 4a, a straight line (cg) is drawn horizontally,
and a straight line (cf) is drawn vertically both through point
¢, and then it can be concluded that the values of £bcf and
Zgch are o and 0+0-90°, respectively. Besides, the normal
and the shear strains of plane de can be formulated by

_&itE 66

5 5 +Tcos2(90°—,8) @)
2B B in2(90°- ) 2)

In addition, as shown in Figure 4b, a straight line is
constructed from point C parallel to plane de, which intersects
the abscissa at point £. Then ray CF is drawn parallel to the
abscissa, and a line is drawn from point C perpendicular to
the abscissa intersecting the abscissa at point D.

B D o Efatf |4 -
€0)

C (&/2)

(b)

From Equations 1 and 2, the coordinates of points C
((g +£3)/2—(€1 —83)0052/3/2, —(gl —53)sin2/5’/2), 0,
((&1+&)/2,00and E ((& +&5)/2— (& — & )cos23/2,0)
are determined. Then the lengths of the straight lines CD and
O,C can be given as

- 83

sin23 3)

cn}-

51— &3

|01C| = cos2f3 “

The tangent of ZCO,D in Figure 4b can be determined
by Equations 3 and 4 as

CD
tansCO,D = u =tan2f (5)

0D

In addition, since chord PC is normal to ray de, then

ZPCF = Zkdi =180°-a - -0 (6)
and,
ZDCP =90°- ZLPCF =a+ +6-90° 7
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Thus, the angle PCO, can be determined by solving
Equations 5-7 as

ZPCO, = Z/DCP+ £DCO, =a+0~-f ®)

and,

ZPO,C =180°-2/PCO, =180°-2(a+6- ) (9
then,
ZPOB=/£COD-ZCOP=2(a+6)-180° (10)

Because £PAB and £PO B are inscribed angles, the
central angle of arc PB on the Mohr’s strain circle is

ZPAB =0.5/PO,B = a + —90° (11)

In addition, since line AP’ parallel to ray ch, then

ZP'AB = Zhcg =a+ 3-90° (12)
Thus, ZPAB equals ZP'AB, meaning that point P
overlaps point P’. Therefore, the pole point proves to be unique.

4. Validity of the pole point of strain

In this section, the validity of the pole point obtained by
using the ray method will be verified by a theoretical method.

As shown in Figure 3b, straight lines are constructed
from point C and point £ perpendicular to the line P ’F to
meet at the points A and G, respectively.

Therefore, the tangent of £« can be calculated by

tans o =| 2 %p_ (13)
T 7P
2 2

In addition, since the pole point is located on the Mohr’s
strain circle, the relationship between the coordinates of the
pole point can be also expressed as

2 2
e, te £, —€
x Ty (7P x 80 [Ty
Ep——— ) 4| L2 (D) 4| 22| (14)
(¢p 7 ) { 5 j ( 5 ) [ 5 j
Solving Equations 13 and 14 gives the coordinates of

the pole point as

2

_ 2
&p =c08

ag, +sin” ag, —sina cosay,, (15)

Vp = (sin2 a —cos? a)yxy —sin2a(£x +8y)

(16)

In a similar way, the strain state of the oblique plane
de can be determined by

TP _ Ve
tans (o —0) = 2 2 a7
Ep—&p

2
CEtE 7/_92_ &8 o (Vo
(& ———>— )+(2j = )+[2j (18)

Then the normal and shear strains of plane de are

& =%(gy —gx)cos2¢9—%(gx +5y)—%}/xy sin26 (19)

Vo = (5x - gy)sin 20—y, cos20 (20)

The rectangular soil element OLMN in Figure 5a is
considered. The strains along O_and O, are ¢ and g, and
Yy is the shearing strain.

Let the OM be of length a, then ON =acos@ and
OL = acos@ . Therefore, the strain of ON and OL are
—acosfs, and — cosbe | respectively.

If point M moves to point M, then the movement of point

M parallel to the abscissa is —(a cosbe, +asin®-y,, / 2) .
Moreover, the movement of point M parallel to the ordinate

is —(asin@ey +acost-y,, /2).
Since the strains are small, the movement of
M parallel to OM is practically coincident with MM~

which equals —(acongx+asinH-7/xy/2)cost9 -

(asiné’gy +acos€-;/xy /2>sin9 .
(Figure 5b). Thus, the

strain of the oblique plane €0 can be given by

(acosﬂa_\. +asin0-%7A.),.jcost9+[asin€sy +acos€-%7/xyjsin9

Eg=—
a

. 1 . 1 .
= —(cost%x +sm9~§yn,jcose—(sm05y +cos€~57xy]sm9

= l(gy —EX)COSZQ—%(EX +£},)—%yxy sin 260

: @

To determine the shear strain in the direction of OM,
a straight line is first drawn from point N perpendicular to
OM, which intersects OM at point P. Since the strain along
OM and OP is ¢, it can be concluded that the extensions
of OM and OP are as, and acosOs,, respectively. Since
the normal and shear strains are small, the movement of P
parallel to OP is practically coincident with PP’.

It can be seen from Figure Sc that, when point P moves
to point P’, line PN rotates about point P clockwise through
a small angle o, and a can be given by

acos® O,y — [a cosBs, +acos@- % 7,y tan 9) cosf
o=

acos@sin@
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Figure 5. Strains on an inclined plane. (a) Strain element, (b) Enlarged view of O’ M M’, and (c) Strains on OM.

(22)

=g, cotf—¢g, cott9+%;/xy
Line OM also rotates about point O through a small
angle 3 counterclockwise, and B can be calculated by

[acos&g. +asin0-f1 y.‘jsinﬁf[asinﬁg,+acos€-fl 7 ,]cos@
! 2'v 4 2
B=

a

. 1 . . 1
= (cos@gx +sm9~57xyjsm9—(sm€sy +c0s9-5}/xy]cos9

= sin0cos oz, fgy)%yxy (sin® 0—cos? 0) (23)

Thus, the shear strain 7, in the direction OM equals
the sum of a and B, and can be given by

Yo =a+pB=(s,—¢5)cotd+

24
(5x—ey)sin6’cosé’+7xy sin” @ @)

Substituting &y of Equation 21 into Equation 24 gives

Vo = (Ex —8y)SiIl 20-y,, cos20 (25)

It can be found that the normal and shear strains obtained
by using the ray method (Equations 19 and 20) are the same
as those calculated by the theoretical method (Equations 21
and 25), indicating that the pole point method is proved to
be valid in obtaining the strain state for a specific oblique
plane of a soil element.

5. Relationship between pole point of strain
and pole point of stress

For a soil element subjected to two-dimensional principal
stresses (Figure 6a), provided that suitable stress and strain
scales are chosen, the stress and strain circles will have the
same center (Figure 6b) (Hearn, 1997). Hearn (1997) found
that the stress and strain scales can be expressed as:

% E

stress =
1-v

x K.

strain

(26)
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Figure 6. Plane stress (strain) element of soil and the corresponding Mohr’s strain and stress circles. (a) Stress (strain) element, and (b)
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Figure 7. Arbitrary plane stress element of soil and the corresponding Mohr’s stress and strain circles. (a) Arbitrary stress element, and

(b) Mohr’s strain and stress circles.

and K. are stress and strain scales of a soil

element, and K and K equal 200, /(o +0,) and
200, /(& +¢,), respectively (Figure 6b). In addition, £
and p are the Young’s modulus and Poisson’s ratio of the
element. Therefore, the relationship between the radius of

the Mohr’s strain and stress circles can be expressed by

where K

stress

:l__UxR
v

stress
1

strain (27)
where R and R . are the radius of the Mohr’s stress and
strain circles, respectively.

If the radius of a Mohr’s circle of stress is known, the
radius of the Mohr’s circle of strain can then be determined
from Equation 27.

A straight line is drawn from point C parallel to plane
ab, and the intersection of the parallel line with the Mohr’s
stress circle is the pole point of stress (denoted as P in
Figure 6b). In a similar manner, a line is constructed from
point D parallel to plane ab, and the intersection of the
parallel line with the Mohr’s strain circle is the pole point of

strain (denoted as P__. in Figure 6b). Therefore, line DP__.
is parallel to line CP__; consequently, it can be concluded
that ZO\P,,,C equals ZOP,,,, D, ie., points O, P
and P lie on the same diameter of the Mohr’s circle.

Provided that the strain or the stress state of a plane,
as well as the Poisson’s ratio of an element are given, the
stress and strain states of an arbitrary plane in the element
can be quickly and easily determined by using the diagram
based on the relationship between pole point of strain and
pole point of stress.

6. Application of the pole point method in
solving complex stress and strain problems

In this section, the parallel line method is used to
show the advantage of the pole point method in solving the
following complex stress and strain problems.

As shown in Figure 7a, each plane of the quadrilateral
strain element is not perpendicular and only the normal and
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shear stresses of planes ab and bc are known. For such a
case, since points 4 and C (Figure 7b) not lie on the same
diameter of the Mohr’s circle, the Mohr’s stress and strain
circles cannot be drawn by using the conventional method.
Thus, the stress state, as well as the strain state of the
oblique plane ef cannot be determined easily. However, as
illustrated before, there must be a pole point on the Mohr’s
circle for the specific stress or strain state. Therefore, the
three non-collinear points (the pole point, point 4 and point
() can construct a unique Mohr’s circle. Such problem can
be tackled as follows.
1. The o-t coordinate system is first constructed, then
a line is drawn from point A4 parallel to plane ab,
and in addition, a line is drawn from point B parallel
to plane bc. The intersection of the two lines is the
pole point of stress (denoted as P in Figure 7b),
since the pole point is unique under a specific pole
point method. Then, Mohr’s stress circle can be
determined by using the three non-collinear points
A, Band P.
2. Byusingthe Equation 27 and the relationship between
the pole points of Mohr’s stress and strain circles, the
Mobhr’s strain circle and the corresponding pole point
of strain (denoted as P__ ) can also be determined.
3. Alineis drawn from point P parallel to plane ef,
which intersects the Mohr’s stress circle at point C,
and the coordinates of point C give the stress state
of plane ef. In a similar way, a line is drawn from
P parallel to plane ef, which intersects the Mohr’s
strain circle at point C’, and the coordinates of C’
give the strain state of plane ef.

7. Conclusion

Mohr’s circle and the pole point method diagram are
very useful in representing the two-dimensional stress and
strain states in materials engineering such as mechanical
packaging and infrared window material engineering and
geotechnical engineering. This paper first summarizes the
parallel line, and the normal line pole point methods for Mohr’s
strain circle, then a new ray method is proposed to obtain
the pole point of strain. This study emphasizes the proof of
the uniqueness, and the validity of the pole point method,
as well as the relationship between the pole points of strain
and stress. A relatively complex case is given to illustrate
the advantage of the pole point method in determining stress
and strain states of a soil element. The following conclusions
can be made.

The parallel line method and the normal line method
are two special cases of the ray method. However, results
show that the parallel line method is the most convenient to
obtain the strain state of a soil element. It has been also proved
that the pole point is unique under a specific method. The
pole point is verified by a corresponding theoretical method.

For the given suitable stress and strain scales, the Mohr’s
strain and stress circles can be drawn as two concentric
circles. The pole points of strain and stress on in the same
diameter of the Mohr’s circle, provided the Poisson’s ratio
of the material is known.

A case study shows that the pole point methods have
significant advantage in obtaining the strain and stress states
of an arbitrary plane in the soil element under complex stress
and strain conditions in which each plane of a quadrilateral
soil element is not perpendicular.
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CD The diameter of the Mohr’s strains circle for the
parallel line method

E Young’s modulus

K Strain scale of a soil element

K . Stress scale of a soil element

0] The center of the Mohr circle
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The radius of the Mohr’s train circle

The radius of the Mohr’s stress circle

Shear strain

Normal strain

Maximum principal strain of the soil element in the
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Normal strain on plane ad

Normal strain on plane cd
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