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1. Introduction

In dispersive materials, the interstitial structure contains 
many exchangeable sodium ions that affect the segregating 
behavior of the soil. The sodium molecules act as dispersing 
agents that increase the thickness of the diffuse double layer. 
Under saturated conditions, the clay assemblages, often called 
“tactoids”, repel each other, undergo lamellar deflocculation, and 
transform into individual colloidal suspensions (Zorluer et al., 
2010). This water-induced removal process creates internal 
erosion and tubular formation (piping), the degree of which is 
a function of sodium content, mineralogy, textural chemistry, 
dissolved salt level and pore size distribution (Zourler, 2003). 
In simpler terms, dispersivity occurs in cohesive soils when 
the repulsive forces between particles exceed the attractive 
forces, facilitating the segregation phase and movement 
in the suspension. Soils with significant dispersive spectra 
generally have low permeability, porosity, and bulk density 
(Ouhadi & Goodarzi, 2006).

Several traditional and modern approaches have been 
proposed to optimize the standard experimental procedures for 
identifying dispersive clay. Generally, conventional laboratory 

index tests such as visual categorization, gradation, specific 
gravity or Atterberg limits do not allow for deeply defining 
the internal erosion suitability of soil (Belarbi et al., 2013). 
There are three tests most frequently performed to determine 
the numerical framework of dispersivity: the crumb test 
(Emerson, 1967), the pinhole test (Sherard et al., 1976a) and 
the Soil Conservation Service (SCS) laboratory dispersion 
test (sometimes called double hydrometer test) (Decker & 
Dunnigan, 1977), commonly used in combination to obtain 
more reliable results. However, there are many critical 
empirical tests and adaptations of chemical nature (Ladd, 
1960; Heinzen, 1976; Coumoulos, 1977; Forsythe, 1977; 
Sargunan, 1977; Jones, 1981). Similarly, Shoghi et al. (2013), 
Abbaslou et al. (2016), and Singh et al. (2018), provide a 
detailed summary of many of these measurement techniques.

Through preferential flow paths, the pinhole technique 
indicates the development of tubular formations in dispersive 
materials with high and low sodium ion content and soils 
with liquefaction potential. In some cases, the Pinhole 
method has a variable degree of suitability for identifying 
dispersive soils (Reeves  et  al., 2006; Ismail  et  al., 2008) 
or tunneling processes (Vacher et al., 2004). However, the 
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shortcomings of pinhole test for being qualitative and not 
effectively identifying accurate soil dispersion (Jermy & 
Walker, 1999) have generated numerous refinement proposals 
that provide a more quantitative measurement rather than 
the typical assessment based on visual examination. Maes 
(2010), evaluated the susceptibility of the pinhole mechanism 
to internal pipe routing and the effect of tunnel development 
on internal soil structure resistance across different hydraulic 
pressures.

This study proposes modifying the pinhole test by the 
imposition of multiple tubing channels on the cross-section of 
kaolin samples. The number of induced channels is presented 
under two different configurations to explore the effects on 
the dispersivity paths. The results will be analyzed mainly 
by comparing the mechanics of the conventional pinhole 
test with the modification proposed in this investigation.

2. Background

As mentioned in the abstract, many dams worldwide 
have failed due to piping problems. In the US alone, 20% 
of dams have revealed incidents related to internal erosion 
driven by seepage. This pathology has often been identified 
in hydraulic-geotechnical structures such as levees, dikes, 
dams, embankments, and spillways, caused by different 
aspects such as animal burrows, roots of some plant species, 
fissures or by some intrinsic condition of a soil susceptible 
to this anomaly (ASDSO, 2023). In the rest of the world, 
most cases are divided between overtopping and quality 
problems, covering 80% of the total cases. Of these events, 
58% of quality problems are related to piping in the body 
or foundation. Data about piping are not shown when it is 
due to dispersivity or erodible soils detonated by an external 
factor (Zhang et al., 2007).

Caldeira (2018) mentions that the erosive (dispersive) 
path has a retrogressive tendency because the detachment of 
particles at the path’s end reveals the pathology’s triggering 
mechanism. Such detachment is exacerbated through the 
porous medium when the critical gradient is greater than the 
threshold that the material physically supports, according to its 
intrinsic properties. The gradient necessary to initiate erosion 
must be very high in fine soils that cross the sieve 200 and 
have a plasticity index greater than 7. The opposite is true for 
non-plastic soils (NP), particularly with a plasticity index of 
less than 7. Schmertmann (2001) reported that the minimum 
gradient generating the detachment in the soil is very low, of 
the order of 0.08. While the speed required for longitudinal 
scour in a dispersive path is between 40 and 90 times that for 
piping processes. It is essential to understand this process, 
according to ibid. Schmertmann (2001), as a detachment 
condition in zones of effective stress and, therefore, of zero 
shear strength (vide Figure 1).

This aspect can be understood in Figure 1, which shows 
the onset of erosion for non-plastic soils according to the 
value discussed in the previous paragraph. As the hydraulic 

gradient increases, erosion is assumed to increase in these 
soils. In contrast, a high hydraulic gradient – i – is required 
to initiate erosion in fine soils. The hydraulic gradient should 
remain constant or, at most, decrease slightly to maintain 
constant erosion in such soils.

The dispersive mechanism of cohesive soils is complex. 
Some researchers, such as Wei et al. (2007), rely on acidity 
theory, using the pH value to explain the reasons for dispersivity. 
Mineral and cation theories are sometimes applied to answer 
this behavior in fine-grained soils (Wang  et  al., 1999). 
Although many of these theories have conceptual bases, they 
still need to be completed in application fundamentals, and 
to ensure proximity to the intrinsic behavior of dispersivity, 
numerous experimental archetypes are developed. The pore 
water-soluble cation test developed by Edgar (1991) and the 
exchangeable sodium percentage test (Sherard et al., 1973) 
follow execution protocols similar to the criteria for dispersion 
potential classification. Fan et al. (2013), propose a quantitative 
method that interprets the results of those tests. Systems 
similar to SCS with different limits were patented by Gerber 
& von Maltitz (1987) and Walker (1998). Likewise, Muttuvel 
(2008) modeled an analytical device for the simulation of 
internal erosion and piping processes, which incorporates the 
stress-strain characteristics of the soil and validates the results 
employing uniaxial tensile tests. Other studies (Camapum de 
Carvalho et al., 1999; Camapum de Carvalho & Gitirana, 2021) 
have evaluated in tropical non-plastic soils that discontinuity in 
particle size distribution can strongly influence tubified erosion.

More current equipment, such as the Jet Erosion Test 
(Hanson & Cook, 2004), the Hole Erosion Test (Fell & Wan, 
2002; Wan & Fell, 2004a, b) and the Slot Erosion Test (op 
cit. Fell & Wan, 2002), allow modeling of internal tubular 
erosion rate and shear stress using the measured flow rate and 
hydraulic gradient. Modifications of these devices and simple 
numerical methods to analyze the collected data are extensive 
(Lim, 2006; Farrar  et  al., 2007; Bonelli & Brivois, 2008; 
Mercier et al., 2012; Karamigolbaghi et al., 2017; Lüthi, 2011; 
Lüthi & Millar, 2011; Marot et al., 2011; Regazzoni & Marot, 
2018). It has recently been possible to determine the potential 
for pipe formation through true triaxial testing under a broader 
range of confining stresses and hydraulic gradients (Richards 
& Reddy, 2010). Tomlinson & Vaid (2000) developed a test to 

Figure 1. Hydraulic gradient versus erosion.
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assess the effect of uniaxial stress on the piping phenomenon. 
Valdes & Liang (2006) adjusted the performance of industrial 
filters in various modes of internal tubular behavior of soils.

The pinhole test, as an indicator for dispersive soils, 
was first expounded by Sherard et al. (1976b) to distinguish 
and refine the understanding of dispersive, sodium ion-
rich, fine-grained, highly erodible soils. The test procedure 
described in ASTM (2013a) is based on extensive testing and 
observational experience, so it is not intended to be used as a 
quantitative test capable of accurately measuring subsurface 
erosion rates (Figure 2). This method is discussed extensively 
by Maharaj (2010) and Maharaj & Paige-Green (2010), and 
numerous approaches are intended to inform the procedure of 
this test for dispersive problem-solving (Leonards et al., 1991; 
Tosun, 2000; Botschek et al., 2002a, b; Vacher et al., 2002; 
Batog et al., 2007; Nadal-Romero et al., 2011a). In all these 
reports, the susceptibility of various soil types to dispersion 
or tubular ingrowth is reported through physicochemical 
parametric measurements before and after the test.

The evident importance of the interaction between 
electrical conductivity and exchangeable sodium in the numerical 
description of clay dispersion and piping (Turner et al., 2008) 
has exposed the pinhole methodology to modifications in order 
to address its operation under quantitative principles. Also, 
Arulanandan & Heinzen (1977) used a rotating cylinder and 
weight loss to measure erosion within the Pinhole device. 
In the same way, Zhang (1981) proposed discriminating soil 
dispersion by the molar rate of sodium ions in the pinhole 
test. Fan et al. (2004) adopted the pinhole mechanism for 
different test-weighted values, which provided a more 
reasonable and reliable synthetic discrimination method to 
isolate soil dispersion (Chen et al., 2017). Similarly, Rahimi 
& Abbasi (2008) developed a metal disk with a short conical 
inlet tube that prevents erosion inside the pinhole device.

3. Materials and methods

3.1 Material characterization

The study was carried out with kaolin, a hydrated 
aluminum silicate. The particle size distribution (PaSD) 
was obtained using the ASTM D7928-1 standard procedure 
under hydrometric processes. Figure 3 shows the particle 
size curve for kaolin. The test used a deflocculant (sodium 
hexametaphosphate) to obtain values for particles with 
diameters less than 0.002 mm. An essential aspect of the PaSD 
of this material is the intrinsic contour of the curve, which 
extends primarily from 0.075 mm to 0.002 mm, indicating 
the dominance of a silty soil.

Table 1 summarizes the clay’s physical properties and 
classification parameters, analyzed considering the coefficient 
of variability between samples.

The use of X-Ray fluorescence (XRF) spectral data 
was carried out in order to know the chemical compositions 
of the minerals present in the clay. On the other hand, the 
changes in the mineralogical information of kaolin were 
focused using X-Ray diffraction (XRD) through the positions 
of the basal reflections. The data provided in Figure  4b 
show that alumina and silica oxide are present in significant 
proportions, while the other compounds are present in trace 
amounts. Excluding the quantitative estimation phase, the 
XRD patterns indicate the presence of quartz, kaolinite and 
illite as the main minerals (Figure 4a).

3.2 Proposed modification to the Pinhole test

The pinhole test alteration includes adding four tubing 
channels in modification type I and eight for modification 
type II, arranged crosswise in the x-y and x’-y’ plane with 
the center at the main hole, as shown in Figures 5 and 6. 

Figure 2. Schematic of the chamber housing the sample in the 
pinhole test. Figure 3. Particle size distribution of the kaolin.

Table 1. Physical properties of kaolin.

Sample Gs  
(.)

Liquid limit  
(%)

Plastic limit  
(%)

Plasticity Index 
(%)

Hydraulic 
conductivity (cm/s)

Specific weight  
γ (g/cm3)

1 2.58 42.2 24.3 19.7 0.000043 1.50
2 2.56 42.2 25.2 17.0 0.000041 1.57
3 2.53 43.0 24.3 18.7 0.000038 1.58

Variation (%) 1.0 1.0 2.0 7.0 6.0 3.0
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Figure 4. Results of: (a) XRD; and (b) XRF.

Figure 5. Different natural and induced paths in the pinhole sample.

As seen in Figure  5, a sample of the pinhole test 
reveals a cross-section made at the end of the test showing 
a blue line representing the erosive path induced by a 1 mm 
diameter probe before starting the test. Although other piping 
channels were not induced, they are identified in the sample. 
Therefore, modification of the test by imposing new pinholes 
is justified, as illustrated in Figure 7.

Inducing various artificial conduits allows for obtaining 
more approximate dispersivity values and testing whether 
including these new channels affects the mechanics of the 

The flow injection is performed through the induced conduits 
using a 1 mm diameter pipe. It is important to describe that 
the distance between the eccentric holes and the sample 
chamber is at least 10 mm. The objective of this proposal is 
to evaluate the dispersive potential of the soil, using a more 
realistic approach to internal piping behavior in compacted 
materials, since generally, erosion processes co-occur in 
numerous channels parallel and perpendicular to the flow 
and are not directed through a single circulation pathway as 
established by the original test.

Figure 6. (a) Pinhole apparatus chamber; (b) Modification I; (c) Modification II.
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results in soils with index values of dispersivity obtained 
through the original pinhole test (Figure 7).

3.3 Testing program

Thirty (30) dispersive and non-dispersive soil samples 
were prepared to provide dispersivity measurements using 
the new mechanical modifications of the Pinhole test. Since 
the natural samples obtained are non-dispersive, artificial 
dispersivity will be imposed in order to reduce the uncertainty 
of false negatives in the crumb (ASTM, 2013b), pinhole 
(ASTM, 2013a), and SCS test (ASTM, 2018).

Taking as a reference the SCS test methodology, better 
known as double hydrometer, where a comparison is made 
between samples tested with a deflocculating agent and without 
a deflocculating agent; the methodology proposed by Galvis 
(2020) and Galvis et al. (2021) is replicated. In this study, the 
samples are artificially dispersed, trying to simulate the natural 
dispersive behaviour of the samples. With this, it was possible 
to advance the research by obtaining first-hand dispersive 
samples due to the impossibility of obtaining them in situ.

Each of the specimens was compacted in three 
separate layers using a small hammer as a compaction tool 
in a bottomless mold, with eight blows per layer according 
to the standard energy calculation required for the volume 
of the specimens. The optimum moisture content for all 
layers is close to 28%, with a maximum dry unit weight of 
1.36 g/cm3. The layers have a thickness of 13 mm for parallel 
flow through the synthetic tubing channels. The dispersive 
samples contain 4% sodium hexametaphosphate added to the 
compaction water of the specimens. This method is analogous 
to that used in the double hydrometer test.

For the pinhole test, a 1 mm diameter hole is drilled 
through the 40 mm long and 35 mm diameter cylindrical 
soil samples, using the geometric distribution for each 
modification (Figure 2). Distilled water is percolated under 
pressures of 50, 180 and 380 mm water column, using a 
reservoir. For the loading values, the effluent flow rate is 

recorded at a controlled time of 60 and 300 seconds to observe 
the qualitative condition of the water after the pinhole test.

4. Analysis and results

Detecting a dispersive anomaly in soil is fundamental 
to the lifetime of a geotechnical structure—particularly those 
with hydraulic stresses, as discussed above. The timing of 
anticipating the dispersive potential of the material is critical 
at the geotechnical design stage.

4.1 Pinhole test

Tests based on the unmodified pinhole method, i.e. 
conventional testing, are developed using ASTM Standard 
Method A. This method is designed for samples suspected 
of being dispersive. The samples are initially known as non-
dispersive. However, the planned set of tests is performed 
on them. Method A must be tested by imposing all pressure 
heads and measuring the flow rates encountered.

Table 2 shows the dispersivity results for the originally 
non-dispersive samples, considering the modifications in the 
flow channels of the specimen, as shown in the methodology. 
It is important to note that the modified samples, imposing more 
piping channels (a priori more realistic), present a different 
classification according to the ASTM D4647-13 standard 
(ASTM, 2013a). However, regarding dispersivity values, 
the qualitative mention is the same, i.e., the samples are also 
classified as non-dispersive. Nevertheless, the standard already 
identifies a difference between ND1 and ND2. In principle, 
this is a minimal distinction based only on the change in the 
effluent rate flow, which begins to reveal the consequences of 
the modification, even in naturally non-dispersive samples.

The samples conventionally used according to the 
reference standard reveal a No dispersive - ND1 classification 
for a single artificial piping channel. However, the modified 
samples (I-II), although also classified as non-dispersive, have 
the ND2 symbology added to them. This aspect means they 

Figure 7. Pinhole test modification: (a) NM, flow direction; (b) Modification I, flow direction; and (c) Modification II, flow direction.
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present a higher flow rate, which is strongly influenced by the 
proposed modification. In all three cases, the flow turbidity 
was completely clear. The difference between clays that are 
referenced as non-dispersive ND1 and ND2, their difference 
lies in the flow rate, which must be less than equal to and 
greater than 3.0 mL/s, respectively.

The only differentiated aspect in the proposed modification 
for the non-dispersive samples, i.e. I and II, is the flow rate 
increase, which, although it seems obvious, is a point of 
interest before evaluating the dispersive samples, as analyzed, 
according to the observation in Figure 5.

The results are interesting concerning the samples 
with imposed dispersivity (Table 3), in which a traditional 
deflocculant is used, as in the particle size distribution 
test for the fine fraction of a material. As expected, the 
unmodified (NM) sample with induced dispersivity changes 
its dispersive response. It is shown that at a pressure head 
of 380 mm, it is already dispersive, and its category reveals 
that it is classified as Slightly Dispersive - ND3 for method 
A and Dispersive – D for method B since the turbidity of 
the source was described as dark and cloudy, respectively.

This aspect already shows a disparity in criteria that 
generates uncertainty in the analysis of the pinhole test. At this 
point, the singular process demonstrated that dispersing 
the soil by adding salt with sodium ions allows the test to 
reflect a true positive. Of course, this only explains some 
things. Although the samples are not naturally dispersive, 
they present a high susceptibility to this pathology when 
infiltrated by humidity with sodium salts.

This description will be incomplete without describing 
the response obtained in the dispersive samples with 
modifications I and II. Consequently, the samples with 
modifications type I and II (five and nine pinholes) in the first 
instance exhibit a lower pressure head at which dispersivity 
was achieved (180 mm) and a logical increase in flow rate, 
as explained above in the analysis of the non-dispersive 
samples. The pinhole orifice remains constant between 5 and 

6 mm, and the turbidity description remains dark or cloudy, 
depending on the method approach.

Here, referring to the change shown in the dispersivity 
classification is necessary according to the reference standard. 
It is evident that in the specimens without modification (NM), the 
description for method A resulted in Slightly dispersive - ND3 and 
for method B, Dispersive D. After subjecting the samples to 
modification I and II, the classification changes from Slightly 
dispersive - ND3 to Moderately dispersive - ND3. In other words, 
the modifications generate a change in the dispersivity of the 
material. It is important to note that the samples are dispersive for 
method B in all cases. However, method A, which is considered 
more accurate due to the ASTM D4647-13 standard (ASTM, 
2013a), reveals an apparent change, which is not small, since 
the change from one step to another in the degree of dispersivity 
implies a variation in the parameters of pressure head, flow rate, 
orifice size and effluent turbidity (see Figure 8). A summary of 
the results obtained is illustrated in Figure 9.

Having done this analysis, it is worth clarifying one 
more aspect of the sample modification. The proximity of the 
chamber can influence the border effect on the eccentric pinholes. 
Figures 5 and 7, show that the tubing channels are naturally 
generated around the imposed pinhole. In addition, in Figure 7, 
the centre of the pinhole is distanced from the chamber wall at 
a distance ten times the pinhole diameter (1 mm). This distance 
is considered sufficient to avoid a possible boundary effect.

4.2 Double hydrometer and crumb test

For the complementary crumb and double hydrometer 
tests, three natural samples and three samples with artificial 
dispersivity were taken to compare with the pinhole tests 
developed. Table 4 shows the results of this qualitative test 
(crumb), which reveals low dispersivity degrees for the natural 
samples. In contrast, the values of the dispersive reaction 
are indeed high for the samples with imposed dispersivity. 
The results are valid for the ASTM D6572-13 standard 
(ASTM, 2013b).

Table 2. Classification of non-dispersive samples.

Sample Modification Max. head reached  
(mm)

Flow rate  
(mL/s)

Hole size after 
test (mm)

Classification  
Method A

Qualitative 
effluent 
turbidity

1 1020 1.73 1.0 No dispersive - ND1 Clear
2 1020 1.75 1.0 No dispersive - ND1 Clear
3 1020 1.78 1.0 No dispersive - ND1 Clear
1 1020 3.37 1.0 No dispersive - ND2 Clear
2 1020 3.45 1.0 No dispersive - ND2 Clear
3 1020 3.42 1.0 No dispersive - ND2 Clear
1 1020 3.90 1.0 No dispersive - ND2 Clear

2 1020 3.78 1.0 No dispersive - ND2 Clear

3 1020 3.95 1.0 No dispersive - ND2 Clear
Legend:  NM, No Modification;  I, Modification I;  II, Modification II.
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In the double hydrometer test (SCS), conducted under 
the standard ASTM D4221-18 (ASTM, 2018), the results of 
the degree of dispersivity according to the test configuration 
are presented (Figure 10). The A/B ratio denotes the percentage 
of dispersivity, which correlates qualitatively with the degree 
of dispersivity. According to note 5 of the reference standard, 
when the dispersion percentage is 100, the material is said 
to be fully dispersive. If it is zero, the soil is entirely non-
dispersive. The official standard categorises a dispersion 

Table 3. Classification of dispersive samples.

Sample Modification Max. head 
reached (mm)

Flow rate 
(mL/s)

Hole size after 
test (mm) Classification method A / B Qualitative 

effluent turbidity

1 380 1.60 6.0 Slightly dispersive - ND3 /  
Dispersive - D Dark/Cloudy

2 380 1.92 6.0 Slightly dispersive - ND3 /  
Dispersive - D Dark/Cloudy

3 380 2.07 6.0 Slightly dispersive - ND3 /  
Dispersive - D Dark/Cloudy

1 180 2.47 5.0 Slightly to moderately dispersive -  
ND3 / Dispersive - D Dark/Cloudy

2 180 2.32 5.0 Slightly to moderately dispersive -  
ND3 / Dispersive - D Dark/Cloudy

3 180 2.37 5.0 Slightly to moderately dispersive -  
ND3 / Dispersive - D Dark/Cloudy

1 180 2.50 5.0 Slightly to moderately dispersive -  
ND3 / Dispersive - D Dark/Cloudy

2 180 2.40 6.0 Slightly to moderately dispersive -  
ND3 / Dispersive - D Dark/Cloudy

3 180 2.42 6.0 Slightly to moderately dispersive -  
ND3 / Dispersive - D Dark/Cloudy

Legend:  NM, No Modification;  I, Modification I;  II, Modification II.

Figure 8. Turbidity classified as dark in the effluent for dispersive 
samples.

Figure 9. Summary of results of the pinhole tests.

Table 4. Degree of dispersivity for the crumb test.

Solution Crumb Condition Time (min) Dispersivity grade Dispersivity 
classification

Distilled water Air dried (from pinhole) 2 1 Non-dispersive
60 2 Intermediate
360 2 Intermediate

Sodium 
hexametaphosphate

Air dried (from pinhole) 2 1 Non-dispersive
60 4 Highly dispersive
360 4 Highly dispersive
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value of 76.9% as a dispersive clay-fraction because the 
value is higher than 50%.

5. Conclusion

A set of qualitative tests such as pinhole, crumb and 
double hydrometer is necessary to obtain the reaction to the 
dispersivity of soil with high reliability. It is recommended to 
include quantitative tests with a physical-chemical approach 
(total dissolved salts, pH, exchangeable sodium percentage, 
and cation exchange capacity). Even analyze the possibility 
of including less studied tests in the literature, such as the 
Hole Erosion Test, Jet Erosion test and Inderbitzen test.

Inducing dispersivity in non-dispersive natural samples 
can be an adequate technique, parallel to the classical 
procedure, to properly calibrate the pinhole equipment used 
to evaluate the degree of dispersivity. By imposing artificial 
dispersivity on the specimen, the whole dispersive panorama 
that the apparatus is capable of measuring in the standardized 
test can be obtained.

The proposed variation to the pinhole test based on the 
ASTM reference standard, which is more realistic through the 
specimen, reveals that in specimens with induced dispersivity, 
it is possible to obtain different dispersivity values than those 
found in the conventional procedure. That is, specimens with 
more piping channels available have higher dispersivity 
values. However, further research is required with different 
degrees of artificial dispersivity of the sample and different 
sodium salts or other ions that may cause dispersivity in the 
clay material.

This research demonstrates that the pinhole test can be 
flawed in accurately assessing soil dispersivity. For highly 
dispersive samples, evaluated by methods A and B, the 
difference in typification can be high.

A further corollary is related to modifying the samples 
by inducing more 1 mm diameter holes in the cross-section, 
demonstrated in Figure 5, where even new trajectories were 
spontaneously generated without the need to impose them. This 
strongly justifies modifying the samples towards a more realistic 
situation. However, a more extensive test campaign, varying 
the clay material, is required to obtain more accurate results.
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