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Abstract. The main purpose of this paper is to present a general method to derive closed form solutions for one-dimensional
consolidation problems under time dependent loading using the Linear Viscoelasticity theory. A review of the basic concepts of
this theory is initially presented and, mainly for illustration purposes, the method is applied to three consolidation problems,
leading to relevant solutions for Geotechnical Engineering. In the first application, considering Terzaghi’s and Barron’s
solutions, creep functions are determined for vertical and radial drainage, allowing derivation of expressions for one-dimensional
consolidation under a number of linear loads for these drainage conditions. Using Carrillo’s equation, the creep function for
combined vertical and radial drainage is obtained, leading to corresponding solution for linear variable loading. Partial
submersion of embankments on soft soils is another consolidation problem under time dependent loading solved by means of
Viscoelasticity. Classical approximate solutions are used in this second application to establish creep functions for vertical
drainage and exact Barron’s solution to establish creep function for radial drainage. An expression for late stages of consolidation
is also derived for combined vertical and radial drainage condition. The third application considers the problem of load transfer
from a consolidating deposit of soft clay to a pattern of drain columns of finite stiffness. Diagrams concerning a case of
consolidation under linear variable three-step loading and consolidation with partial submersion of the fill are provided to
illustrate the solutions obtained.
Key words: one-dimensional consolidation, viscoelasticity, variable loading, submersion of embankments, drain columns.

1. Introduction

The main purpose of this paper is to present a general
and simple method to derive solutions for consolidation
problems involving variable loading. The method consists
in employing Linear Viscoelasticity to state constitutive
equations and Laplace transforms to solve these equations.
The corresponding creep function for each problem is ob-
tained from existing solutions for constant loading.

Attention should be drawn to the words viscoelas-
ticity and creep function, which might be misleading once
there is no viscous phenomenon affecting primary consoli-
dation. However, for total stress analysis, the method is per-
fectly applicable despite the hydrodynamic feature of the
process once there is a time dependent strain for a constant
total stress applied.

The method is illustrated through three applications
involving practical problems of geotechnical engineering
design, as explained below.

Construction of embankments on soft soils is usually
performed in steps of loading. Owing to conditions such as
construction timing and low strength of the underlying soil,
these steps must be carefully planned as far as the rate of
filling is concerned. Also, in order to abbreviate the time of
construction, drain wells are often installed and therefore

the analysis must contemplate consolidation with both ver-
tical and radial drainage.

Conventional analyses of consolidation with variable
loading usually lead to rather complex mathematical for-
mulations. Nevertheless, a great deal of work has been ac-
complished in order to obtain solutions for one-dimen-
sional consolidation with variable loading. Therefore, a
number of approximate and exact solutions are now avail-
able (Terzaghi and Frölich, 1936; Taylor, 1942; Schiffman,
1958; Olson, 1977; Kurma Rao and Vijaya Rama Raju,
1990; Da Mota, 1996; Lekha et al., 1998).

Using total stress linear viscoelastic approach, solu-
tions to this first application may be obtained in an elegant
and simple way, even for complex variable loading history
and either for vertical, radial or combined drainage condi-
tions. These solutions guarantee unquestionable benefits in
accuracy when embankments construction conditions im-
pose several steps of loading with different loading rates.

The second application regards the effect of the sub-
mersion of the fill, which is another important problem con-
cerning one-dimensional consolidation with variable
loading. Total stress viscoelastic analysis provides a closed
form solution for vertical, radial or combined drainage con-
ditions.
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The third application considers the problem of load
transfer from a consolidating deposit of soft clay to a pat-
tern of drain columns of finite stiffness.

The analyses presented in this paper consider linear
behaviour of soils for small deformation problems. This is
certainly an approximation and may introduce some inac-
curacy in the results. However, this approximation is the
same as that found in the Terzaghi’s Theory of Consolida-
tion, which produces reasonably accurate predictions for
most of the practical situations. It is worth mentioning that
despite Linear Viscoelasticity not applying to materials ex-
hibiting nonlinear stress-strain behaviour, an extension to
the linear superposition principle can be employed to de-
rive nonlinear viscoelastic constitutive equations (Findley
et al., 1976).

2. Basic Concepts

2.1. Creep and relaxation functions

Many stress-strain-time relations existing in technical
literature are basically empirical (Findley et al., 1976;
Bland, 1960). Most of them were established to fit experi-
mental data obtained under constant stress and temperature.
However, actual behaviour of materials has shown that the
strain corresponding to a particular time depends on all the
stress values to which the material has been submitted in
the past and not on its final value. Therefore, the creep phe-
nomenon is affected by the whole stress history. Con-
sidering this, several methods have been proposed to
represent the viscoelastic behaviour of the materials. In
general, however, there are two alternative mathematical
procedures to represent the stress-strain-time behaviour of
the materials: differential and integral forms.

The study carried out in this paper employed the inte-
gral form or, as frequently referred, hereditary integrals.
The advantage of the hereditary integrals over the differen-
tial form consists of a higher flexibility of representation of
the material properties inferred from laboratorial tests. Inte-
gral form can also be extended to describe the behaviour of
aging materials and incorporate temperature effects. Be-
sides, for problems involving rather complex time loading
functions, the integral method leads to a simpler solution.

In a uniaxial creep test a step of constant stress
σ = σ0H(t), where H(t) represents the unit step or Heaviside
function, is applied to a viscoelastic material and the strain
ε(t) is measured. For materials exhibiting linear behaviour,
the strain can be represented by

ε σ( ) ( )t J t= 0 (1)

or

J t
t

( )
( )

=
ε
σ0

(2)

The function J(t) is called creep function or creep
compliance and is a material property.

In a relaxation test a step of constant strain ε = ε0H(t)
is prescribed to a viscoelastic material and the stress σ(t) is
measured. For linear materials the stress can be represented
by

σ ε( ) ( )t R t= 0 (3)

or

R t
t

( )
( )

=
σ
ε 0

(4)

The function R(t) is called relaxation function or re-
laxation modulus and, likewise the creep function, is a ma-
terial property.

2.2. Integral representation of creep for uniaxial stress

If a viscoelastic body with linear behaviour is sub-
jected to a continuous stress function σ(t) with finite deriv-
ative within the concerned time interval, representing the
stress history, the corresponding strain function ε(t) can be
obtained from the equation

ε τ
∂σ τ

∂τ τ( ) ( )
( )

t J t d
t

= −∫
0

(5)

where τ is an auxiliary variable and J(t - τ) the creep func-
tion. Expression (5) may also be alternatively represented
by

ε σ
∂ τ)

∂τ σ τ τ( ) ( ) ( )
(

( )t t J
J t

d
t

= −
−∫0

0

(6)

if J(t - τ) is continuous and differentiable.
Expressions (5) and (6) apply to the particular case

where the process begins at time t = 0 and the initial value
of the stress is zero, i.e., σ(0) = 0. For the general case, with
the process beginning at time τ0 and the initial value of the
stress being different from zero, the following equations
hold

ε σ τ τ τ)
∂σ τ)

∂τ τ
τ

( ) ( ) ( ) (
(

t J t J t d
t

= − + −∫0 0
0

(7)

ε σ
∂ τ)

∂τ σ τ τ
τ

( ) ( ) ( )
(

( )t t J
J t

d
t

= −
−∫0

0

(8)

Once the creep function J(t) is identified, one of the
Eqs. (5), (6), (7) and (8) can be employed to predict the
stress function σ(t) given a prescribed strain history ε(t).
However, resolving σ(t) using one of the above equations
involves the solution of an integral equation, which is math-
ematically much more complicated than a direct integra-
tion. Otherwise, the following equations can be written
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σ ε τ τ τ
∂ε τ

∂τ τ
τ

( ) ( ) ( ) ( )
( )

t R t R t d
t

= − + −∫0 0
0

(9)

σ ε
∂ τ

∂τ ε τ τ
τ

( ) ( ) ( )
( )

( )t t R
R t

d
t

= −
−∫0

0

(10)

Therefore, to determine σ(t) from a prescribed strain
history ε(t), the relaxation function R(t) must be known.

2.3. The method proposed

The proposed method consists of three steps:
(1) Using Eq. (2) and the relevant consolidation solu-

tion for constant total stress, define the creep
function;

(2) Taking into account the creep function defined in
(1) and the total stress history of the problem, the
Laplace transform one of the Eqs. (5), (6), (7) and
(8) leads to the solution or to an algebraic equa-
tion that can be easily solved;

(3) Find the inverse Laplace transform of the solution
obtained in (2).

The last step is often the most difficult one, presenting
in some cases no closed form solution.

3. First Application: Analysis of
One-Dimensional Consolidation under a
Number of Linear Variable Loads

The analysis presented in this paper establishes creep
functions derived from Terzaghi’s and equal strain Bar-
ron’s equations for vertical and radial drainage respec-
tively. Therefore, the same assumptions made to obtain
those equations are also considered here, as follows:

(1) The soil is considered homogeneous and fully sat-
urated;

(2) The compressibility of the soil particles and the
water are negligible in comparison with that of
the soil structure;

(3) There is only vertical displacement of the soil par-
ticles and vertical water flow for Terzaghi’s
equation and radial water flow for Barron’s equa-
tion;

(4) Darcy’s law is strictly valid;
(5) The stress-strain relationship of the soil structure

is linear.

3.1. First case: vertical drainage

Suppose a homogeneous deposit of soft clay (Fig. 1)
subjected to a loading constituted by a set of linear variable
loads (Fig. 2). According to Terzaghi and Frölich (1936),
the average degree of consolidation Uv for one-dimensional
consolidation with vertical drainage and constant loading is

U
M

ev
M Tv= − −

∞

∑1
2

2
0

2
(11)

where

M m= +( )2 1
2
π

(12)

T
c t

Hv
v= 2 (13)

where cv = coefficient of consolidation for vertical flow,
t = time and H = maximum drainage distance.

It may also be written

U
s t
s

t
v = ∞ = ∞

( )
( )

( )
( )

ε
ε (14)

where s(t) = settlement of the top of the layer at time t,
s(∞) = final settlement of the top of the layer, at infinite
time, ε( )t = average vertical strain at time t and ε( )∞ = final
average vertical strain, at infinite time.

For a homogeneous deposit of soft soil, the average
strain at infinite time may be written as

ε σ( )∞ = m v 0 (15)

where mv = coefficient of volume compressibility and
σ0 = total stress applied.

Therefore

ε σ( )t m
M

ev

M
c t

H
v

= −










−∞

∑0 2
0

1
2 2

2
(16)

Taking into account expression (16) and recalling that

J t
t

( )
( )

=
ε
σ0

(2)

follows

J t m
M

ev v

M
c t

H
v

( ) = −










−∞

∑1
2

2
0

2
2

(17)

Let q(t) be the loading acting on the surface of the
clay deposit, as illustrated in Fig. 2. For t ≤ tn, this loading
may be represented by
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Figure 1 - Representation of a clay layer subjected to one-dimen-
sional consolidation with vertical drainage under variable load-
ing.



q t q t t H t t H t ti i i i

n

( ) { ( )[ ( ) ( )]}= − − − −− −∑ 1 1
1

(18)

where t0 = 0 and H(t) is the Heaviside function, as previ-
ously mentioned.

Equation (6) may be written as

ε τ
∂ τ)

∂τ τ( ) ( ) ( ) ( )
(

t q t J q
J t

dv
v

t

= −
−

∫0
0

(19)

or

ε

τ τ τ
∂

( ) ( ) ( )

( )[ ( ) ( )]
(

t q t J

q t H t H t
J t

v

i i i i
v

= −

− − − −
−

− −

0

1 1

τ)
∂τ τd

tn

01
∫∑ 








(20)

Considering Eq. (17) and bearing in mind that

J m
Mv v( )0 1

2
02

0
= −







 =

∞

∑ (21)

q t q
q

t t
tk k i

k

k k
k

k

( ) ( )τ τ− = + − −−
−

−

−

∑1
1

1
1

1

∆
∆

(22)

the integral of Eq. (20) may be evaluated, giving

ε( )

(

( )

T m q
T T

M
e

v v i
v v

k

M

i i

= −
−

×












−

−

−

−

∑ ∆ 1
2

1
1

1

2

1

1

4

( ) ( )( ) )
T T M T T

v k

v v

vi v i v vie m q

T T

−∞
− −−∑ ×










+ ×

−

1
2

0

∆

( )

( ) ( )

( )( )k

k k k k

v v k

T T T T M
e

v v v v

M T T−

− −

−

−
−

−
− − −1

1 1

2
12 1

14


 
















∞

∑
0

(23)

and

U T
T T M

e

v v i
v v

k

M

i i

( )
( )

= −
−

×












−

−

∞−

−

∑∑ ρ 1
2 1

1

1

2

4
01

1

( ) ( )( ) (T T M T T
k

v vvi v i v vi ke
T T− − −− −


 


 ×








+
−

1
2

1ρ )

( )

( )

( )( )

T T

T T M
e

v v

v v

M T T

k k

k k

v v k

−
−







−
−

−

−

−− −

1

1

2
12 1

14


 









∞

∑
0

(24)

where

ρi
i

i
i

n

q

q

=
∑

∆

∆
(25)

Tvi
= time factor for vertical drainage relative to time ti.

Expressions (23) and (24) are valid for tk-1 ≤ t ≤ tk

(k ≤ n). For t > tn the loading history is represented by

[ ]{ }q t q t t H t t H t t

q t H t t

i i i i

n

n n n

( ) ( ) ( ) ( )

( ) ( )

= − − − − +

−

− −∑ 1 1
1

(26)

where

q t qn n i

n

( ) = ∑ ∆
1

(27)

Substituting Eq. (26) into Eq. (19) and integrating,
yields

ε( )

(

( )

(

T m q
T T

M
e

v v i
v v

n

M T

i i

= −
−

×












−

−
∑

−

∆ 1
2

1
1

1

2

1

4
vi v i v vi

T M T T
e

−∞
− −−∑ ×










( ) ) ( )

)1
2

0

(28)

and

U T
T T M

e

v v i
v v

n

M T

i i

( )
( )

(

= −
−

×












−

−

∞

−

∑∑ ρ 1
2 1

1

1

2

4
01

vi v i v vi
T M T T

e
− − −−


 


 ×








( ) ) ( )1
2

(29)

Expressions (28) and (29) are therefore valid for t ≥ tn.

3.2. Second case: radial drainage

This case considers a homogeneous deposit of soft
clay with vertical drains (Fig. 3) subjected to the same gen-
eral loading scheme admitted in the first case (Fig. 2). It is
assumed that no vertical drainage occurs in the clay.

The degree of consolidation Ur for one-dimensional
consolidation with radial drainage, constant loading and
equal strain (Barron, 1948) is
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Figure 2 - General loading history considered in the analysis.

Figure 3 - Representation of a clay layer subjected to one-di-
mensional consolidation with radial drainage under variable load-
ing.



U er

T

f n
r

= −
−

1
8
( ) (30)

where

T
c t

rr
r

e

=
4 2 (31)

f n
n

n
n

n

n
( ) ln( )=

−
−

−





2

2

2

21

3 1

4
(32)

n
r

r
e

d
= (33)

where cr = coefficient of consolidation for radial flow,
t = time, re = radius of the zone of influence of the drain and
rd = radius (or equivalent radius) of the drain.

Taking into account that ε(z, t) in this case is constant
along the depth z, the following equation may be written

U
s t
s

t
r = ∞ = ∞

( )
( )

( )
( )

ε
ε (34)

and so

ε σ( ) ( )t m ev

c t

f n r
r

e= −














−

0

2

1
2

(35)

Therefore, the creep function for radial drainage is

J t m er v

c t

f n r
r

e( ) ( )= −














−
1

2
2

(36)

In this case, Eq. (6) may be written as

ε τ
∂ τ)

∂τ τ( ) ( ) ( ) ( )
(

t q t J q
J t

dr
r

t

= −
−

∫0
0

(37)

For t ≤ tn, the vertical strain ε(t) due to the loading his-
tory q(t) represented by Eq. (18) is

ε τ τ

τ

( ) ( ) ( ) ( )[ ( )

(

t q t J q t H t

H t

r i i i

tn

= − − −




−

−

− −∫∑0 1 1
01

i
rJ t

d)]
( )∂ τ
∂τ τ

− 

(38)

Inserting Eq. (36) into the right-hand side of Eq. (38),
recalling that

Jr ( )0 0= (39)

q t q
q

t t
tk k i

k

k k
k

k

( ) ( )τ τ− = + − −−
−

−

−

∑1
1

1
1

1

∆
∆

(22)

and evaluating Eq. (38), yields

ε ( )
( )

( )
( )

(( )
(

T m q
f n

T T
er v i

r r

f n
T T

i i

ri r i= − − −
−

−− −
∆ 1

8
1

1

8
1

1

1

8

) )

( )
( )











 ×

























−

− −

∑
k

f n
T T

e
r ri +

−
− − − ×






−

− −

m q
T T

T T
f n

T Tv k

r r

r r r r

k

k k k k

∆ ( )

( ) ( )

( )
( )

1

1 1
8

1

8
1−



















− − −
e f n

T Tr r k( )
( )( )

(40)

and

U T
f n

T T
er r i

r r

f n
T T

i i

ri r i
( )

( )
( )

( )

( )( )
(

= −
−

−
−

−− −
ρ 1

8
1

1

1
8

)

( )
( )

(













 ×














+
−

−

− −

∑

−

1

1

8
1

k

f n
T T

k
r r

e
T Tr ri kρ )

( ) ( )

( )
( )

( )
(

T T
f n

T T

e

r r r r

f n
T T

k k k k

r

−
−

−
×







−

− −

− −

1 1
8

1
8

r k( ) )−





















1

(41)

where

ρi
i

i
i

n

q

q

=
∑

∆

∆
(25)

Tri
= time factor for radial drainage relative to time ti.

Expressions (40) and (41) hold for tk-1 ≤ t ≤ tk (k ≤ n).
For t > tn, using the loading history represented by Eq. (26),
ε(t) may be expressed by

ε ( )
( )

( )
( )

(( )
(

T m q
f n

T T
er v i

r r

f n
T T

i i

ri r i= − − −
−

−− −
∆ 1

8
1

1

8
1

1

8

) )

( )
( )











 ×

























∑

− −

n

f n
T T

e
r ri

(42)

and

U T
f n

T T
er r i

r r

f n
T T

i i

ri r i
( )

( )
( )

( )

( )( )
(

= −
−

−
−

−− −
ρ 1

8
1

1

1
8

)

( )
( )













 ×














∑

− −

1

8

n

f n
T T

e
r ri

(43)

Expressions (42) and (43) must be applied when t > tn.

3.3. Third case: combined vertical and radial drainage

For combined vertical and radial drainage and con-
stant loading Carrillo (1942) has proved that

( ) ( ) ( )1 1 1− = − × −U U Uvr v r
1 (44)
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where Uvr = average degree of consolidation for combined
vertical and radial drainage, Uv = average degree of consoli-
dation for vertical drainage and Ur = degree of consolida-
tion for radial drainage.

Recalling that

J m Uv v v= (45)

J m Ur v r= (46)

J m Uvr v vr= (47)

and considering Eq. (44), the following expression may be
written

J J J
J J

mvr v r
v r

v
= + − (48)

or, taking into account Eqs. (17) and (36), then

J t m
M

evr v

M
c H

c f n r

c t

H
r

v e

v

( ) ( )= −
 − +


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
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(49)

Making

θ =
2 2

2

c H

c f n r
r

v e( )
(50)

and comparing Eqs. (49) and (17), it is apparent that the so-
lution for combined drainage may be easily obtained from
substituting M2Tv by (M2 + θ)Tv in the expressions derived
for vertical drainage. Therefore, the following equations
apply to combined vertical and radial drainage.

For tk-1 ≤ t ≤ tk (k ≤ n)
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and
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where
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i
i

n

q
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For t > tn
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and
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(54)

Equations (23), (24), (28), (29), (40), (41), (42) and
(43) are consistent with corresponding solutions presented
in technical literature (Terzaghi and Frölich, 1936; Taylor,
1942; Schiffman, 1958; Olson, 1977; Kurma Rao and Vi-
jaya Rama Raju, 1990; Da Mota, 1996; Lekha et al., 1998),
for one linear variable loading, since one makes k = 1 in
Eqs. (23), (24), (40) and (41), vanishing the first term, and
n = 1 in Eqs. (28) (29), (42) and (43).3.4.

A case solution

In order to present an application to the equations de-
rived in this section, a consolidation analysis of a clay layer
submitted to the loading history shown in Fig. 4 has been
performed.

The loading features are
• 3 equal steps of loading with constant rate ∆q/∆t
• 2 equal resting intervals of time between loadings

with length k∆t
The analysis considers the three cases studied
• Only vertical drainage for Tv1

= 0.1; k = 5, 10 and
20

20 Soils and Rocks, 31(1): 15-28, January-April, 2008.
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Figure 4 - Particular loading history considered in the application
studied (linear variable three-step loading).



• Only radial drainage for Tr1
= 0.1; k = 5, 10 and 20;

n = 10 and 30
• Combined vertical and radial drainage for

Tv1
= 0.1; k = 5, 10 and 20; θ = 10 and 100

Figures 5 to Fig. 7 illustrate the results obtained. Con-
solidation for the second and third increments of load ex-
hibits a steeper slope in the curves owing to the logarithmic
scale. Values of Ur for n = 10 (Fig. 6a) increases faster than
for n = 30 (Fig. 6b) because of the higher density of vertical
drains in the former case. It can also be noticed that the
progress of consolidation illustrated in Fig. 7(b) is faster
than in Fig. 7(a). This behaviour can be explained by the
magnitude of the parameter θ, representing the relative im-
portance between vertical and radial drainage in combined
conditions. Low values of θ indicate that vertical drainage
plays a major role in consolidation. On the other hand, high
values of θ mean that radial drainage is prevailing.

4. Second Application: Analysis of
One-Dimensional Consolidation of Soft Soils
under Embankment Loading With Partial
Submersion of the Fill

When an embankment is constructed on the surface of
a clay deposit with high water table level, its self-weight de-
creases with time owing to the partial submersion of the fill
caused by the settlements. Therefore, consolidation analysis
in this case must take into account the resulting variable de-
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Figure 5 - Curves Uv x Tv for one-dimensional consolidation with
vertical drainage under linear variable three-step loading and
Tv1

= 0.1.

Figure 6 - Curves Ur x Tr for one-dimensional consolidation with
radial drainage under linear variable three-step loading, Tr1

= 0.1,
(a) n = 10 and (b) n = 30.

Figure 7 - Curves Uvr x Tv for one-dimensional consolidation with
combined vertical and radial drainage under linear variable three-
step loading, Tv1

= 0.1, (a) θ = 10 and (b) θ = 100.



creasing loading. Linear Viscoelasticity theory provides the
necessary background for this analysis regarding the same
basic assumptions considered in the previous application.

4.1. First case: vertical drainage

If a fill of height h and unit weight γt is placed onto a
homogeneous deposit of soft clay of thickness H, the initial
loading on the clay layer is (Fig. 8a)

q ht0 = ×γ (55)

After an interval of time t, supposing for simplicity
the water table located at the surface of the clay layer2, the
loading is (Fig. 8b).

q t q H t( ) ( )= −0 ∆γ ε (56)

where

∆γ γ γ= −t b , (57)

γb = submerged (buoyant) unit weight of the fill.

Recalling that

ε τ
∂ τ)

∂τ τ( ) ( ) ( ) ( )
(

t q t J q
J t

dv
v

t

= −
−

∫0
0

(19)

and substituting Eq. (56) into Eq. (19), yields

[ ]

[ ]
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∂τ τ

( ) ( ) ( )

( ) ( )
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t q H t J
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d
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−

∫

0

0
0

0∆

∆
(58)

An easier solution to Eq. (58) can be obtained if the
approximate expressions for U(Tv) are employed instead of
the rigorous Terzaghi’s solution, as follows

• early stages of consolidation U Tv v= 

 


4

1
2

π (59)

• late stages of consolidation U ev

Tv

= −
−

1
8

2
4

2

π

π

(60)

4.1.1. Early stages of consolidation

From Eq. (59), it may be written

ε
π

( )t m q
c t

Hv
v= 


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24
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and, therefore
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4
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1
2

π
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Substituting Eq. (62) into Eq. (58), yields
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(63)

Applying Laplace transform to Eq. (63), resolving for
!( )ε s and applying the inverse transform, results

ε α αα( )T
q m

e erfcv
v Tv= − ×









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
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and

U T e erfcv v
Tv( ) =

+
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α
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where

α γ= m Hv ∆ (66)

erfc ( ) = complementary error function

4.1.2. Late stages of consolidation

It may be inferred from Eq. (60) that

ε
π

π

( )t m q ev

c

H
tv

= −








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0 2

41
8
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(67)

and, therefore
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Figure 8 - Representation of partial submersion of an embank-
ment constructed on the surface of a clay layer due to one-dimen-
sional consolidation with vertical drainage.

2 Actually, the water table can be at any location. If, for instance, it is above the clay surface, q0 should be conveniently calculated considering its
initial partial submersion. On the other hand, if it is below the clay surface, ∆γ should take into account what soil is going to be submerged (clay
only or clay and fill).
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Substituting Eq. (68) into Eq. (58), yields
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Applying Laplace transform to Eq. (69), resolving for
!( )ε s and finding the inverse transform, yields
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and the average degree of consolidation

U T ev v( ) = −
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For Tv → ∞, Eq. (70) becomes

ε α
ε

α( )
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( , )
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→ ∞
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Considering the logarithmic relationship between
void ratio and vertical effective stress,
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where e0 = initial void ratio, ′p0 = initial effective stress and
Cc = compression index, the parameter α may be evaluated
from

α
γ

= × + ×
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It can be observed that Eqs. (65) and (71), for situa-
tions (4.1.1) and (4.1.2) respectively, assume the same

value for Tv approximately equal to
0213

1 3
2

.

+ α . Therefore, the

following may be stated:
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α , use equations
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U T ev v( ) = −
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Curves Uv x Tv for α = 0.20, 0.50 and 0.80 and Tv x α
for Uv = 50%, 70% and 90% are shown in Figs. 9 and 10.

4.2. Second case: radial drainage

Now suppose a fill of height h and unit weight γt

placed onto the surface of a homogeneous deposit of soft
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Figure 9 - Curves Uv x Tv for vertical drainage with partial sub-
mersion of the fill.

Figure 10 - Curves Tv x α for vertical drainage and partial submer-
sion of the fill.



clay of thickness H, where vertical drains have been in-
stalled, assuming no vertical drainage occurring (Fig. 11).
As in the first case (vertical drainage), the initial loading is

q ht0 = ×γ (55)

and the loading after an interval of time t is

q t q H t( ) ( )= −0 ∆γ ε (56a)

where ∆γ has the same meaning as in the first case.
Recalling that

ε τ
∂ τ)

∂τ τ( ) ( ) ( ) ( )
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t

= −
−

∫0
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and inserting Eq. (56a) into Eq. (37), results
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Substituting Eq. (36) (creep function for radial drain-
age) into Eq. (75), applying Laplace transform, resolving
for !( )ε s and finding the inverse transform, yields
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and the degree of consolidation is
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Similarly to the vertical drainage case, the final strain
is

ε α
ε
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( , )
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q m Tv r0

1 1

without submersion
(78)

Figures 12 and 13 present respectively the curves
Ur x Tr for n = 10 and 30 and α = 0.20, 0.50 and 0.80, and
Tr x α for n = 10 and 30 and Ur = 50%, 70% and 90%.

4.3. Third case: combined vertical and radial drainage

Solution for combined vertical and radial drainage re-
garding the early stages of consolidation cannot be easily
derived. However, a straightforward approximate solution
can be obtained for the late stages, as follows.

Using Carrillo’s expression (44), it has been shown
that

J J J
J J

mvr v r
v r

v
= + − (48)

Substituting Eqs. (68) and (36) into Eq. (48), results
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Figure 11 - Representation of partial submersion of an embank-
ment constructed on the surface of a clay layer due to one-dimen-
sional consolidation with radial drainage.

Figure 12 - Curves Ur x Tr for radial drainage with partial submer-
sion of the fill, (a) n = 10 and (b) n = 30.



It can be written
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Substituting Eq. (79) into Eq. (80), applying Laplace
transformation, resolving for !( )ε s and finding the inverse
transform, yields
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and
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which hold for

Tv ≥
+

0 213
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.
α (83)

Naturally, for Tv → ∞, Eq. (81) gives

ε α
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→ ∞
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q m Tv v0

1 1
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(72)

Figure 14 illustrates the results of combined drainage
through the curves Uvr x Tv for α = 0.20, 0.50 and 0.80 and
θ = 10.

4.4. Final remark on the second application

The non-dimensional parameter α varies mainly be-
tween 0 and 1 and affects both the amount of settlement and
the consolidation rate, as can be seen from Eqs. (64), (70),
(76) and (81). Diagrams of Figs. 9-10 and Figs. 12-14 show
how α affects the progress of consolidation. However, al-
though larger α implies faster consolidation in terms of
time factor, when vertical drainage takes place this conclu-
sion may not hold for real time if one compares deposits of
different thicknesses.

5. Third application: Analysis of
One-Dimensional Consolidation of Soft Soils
by Drain Columns of Finite Stiffness

Installation of drain wells in soft clay deposits aiming
the acceleration of the consolidation process is a technique
ordinarily employed in design of embankments on soft
soils. Although the use of flexible pre-fabricated drain
poses generally economic advantages, there are particular
situations where the availability of low cost sand or stone
nearby the work site allows the utilization of these materi-
als as drain columns. Besides, drain columns of finite verti-
cal stiffness also reduce the final settlement, becoming thus
an economically attractive solution in some cases.

The purpose of this application is to solve the prob-
lem of the one-dimensional consolidation of a cell com-
prised by a cylinder of soil having a diameter de surround-
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Figure 13 - Curves Tr x α for radial drainage and partial submer-
sion of the fill, (a) n = 10 and (b) n = 30.

Figure 14 - Curves Uvr x Tv for combined vertical and radial drain-
age with partial submersion of the fill and θ = 10.



ing a stiff drain column having a diameter ds (Fig. 15). In
most of the practical problems the influence of the vertical
drainage may be neglected when compared to the radial
drainage and, therefore, only this latter condition is consid-
ered herein.

Besides the assumptions regarding the behaviour of
the clay considered in the first application presented, the
following assumptions are also assumed:

(6) the drain column material has finite stiffness with
linear stress-strain relationship;

(7) the lateral displacements of the drain column are
very small, not affecting therefore the consolida-
tion of the clay;

(8) the clay layer and the drain column have the same
strain at any time after loading (equal strain).

Taking into account the high values of vertical strains
normally associated with problems of embankments on soft
soils, one can assume that the drain column is under failure
condition in most of its length. However, as the radial com-
pressive stresses acting on the column also increase with
the strain, owing to the increase in the effective stresses in
the clay layer, it is reasonable to admit, as an approxima-
tion, the linear stress-strain behaviour stated in the assump-
tion (6).

According to Barksdale and Bachus (1983), area re-
placement ratio, as, is defined as

a
A

As
s= (84)

where As is the area of the drain column and A is the total
area within the cell. The ratio of the area of the soil remain-
ing, Ac, to the total area A is then

a ac s= −1 (85)

The area replacement ratio, as, may also be expressed
as a function of the diameter and spacing of the drain col-
umns by the following equation

a C
d

ss
s= 


 


1

2

(86)

where ds = diameter of the drain column, s = centre-to-
centre spacing of the drain columns and C1 = constant de-
pendent upon the pattern of drain columns used; for a
square pattern C1 = π/4; for equilateral triangular pattern
C 1 2 3

= π
( )

, or

a
ns =
1
2 (87)

Stress concentration factor, ν, is defined as

ν =
q

q
s

c
(88)

where qs = vertical loading stress acting on the top of the
drain column and qc = vertical loading stress acting on the
surface of the clay layer.

The mean vertical loading stress q on the top of the
cell can be obtained by equilibrium condition, as follows

q q a q as s c s= × + −( )1 (89)

Denoting Ks the modulus of deformation of the drain
column, one may write for any time t

ε( )
( )

t
q t

K
s

s
= (90)

Equating the strain in the clay layer (Eq. (37)) to the
strain in the column (Eq. (90)) and applying Laplace trans-
form to the resulting expression and also to Eq. (89), yields
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Resolving the system of Eqs. (91) and finding the in-
verse transform, yields
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where
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Figure 15 - Representation of a cylinder of soil surrounding a stiff
drain column (after Barksdale and Bachus, 1983, modified).



β = a K ms s v (94)

The stress concentration factor, ν, can be obtained
from Eqs. (88), (92) and (93).

The vertical strain in the soil layer can be obtained
substituting Eqs. (36) and (92) into Eq. (37), which may be
solved using Laplace transforms, giving

ε β
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The average degree of consolidation is, then

U T er
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(96)

The parameter β represents the relative stiffness be-
tween the drain column and a fictitious column of soil hav-
ing the diameter de, previously defined. The progress of the
concentration factor with time can be seen in Fig. 16 for a
particular case of as = 0.02 and β = 0.2, evidencing the grad-
ual and partial unloading of the soil, shifting the embank-
ment weight from the clay layer to the drain columns.

The parameter β varies in the range 0-∞. It is worth
discussing the above equations for two particular values of
β, corresponding to Ks = 0 and Ks = 1/mv.

(1) β = 0 (for Ks = 0)

In this case,
q

q a
c

s
= −

1
1

and
q

q
s = 0, representing the

consolidation of a clay layer under a constant loading
q
a s1− .

(2) β = as (for Ks = 1/mv)

In this case, clay and drain have the same compress-
ibility. Since the drain behaves as an elastic-instantaneous
material (i.e., it has no time-dependent constitutive equa-

tions), at the initial time (t = 0) there is no vertical strain in
the clay and therefore all the loading is borne by the clay.
As consolidation progresses, part of the loading bore by the
clay is shifted to the drain column and eventually, at the end
of consolidation (t → ∞), the loading stress on the clay is
the same as on the drain.

6. Conclusions
The Linear Viscoelasticity theory is a powerful tool

to solve one-dimensional consolidation problems under
variable loading. Although primary consolidation is strictly
a hydrodynamic phenomenon, it may be successfully
treated as a viscoelastic problem in terms of total stresses.
This approach is similar to considering saturated clay soil
exhibiting Tresca yield envelope when submitted to un-
drained loading, in terms of total stresses, when its plastic
behaviour is analysed. This first and certainly the main con-
clusion of this work resulted from the straightforward way
that three study cases involving consolidation of soft soils
under variable loading were solved. The closed form solu-
tions obtained are also relevant for both design practice and
validation of numerical models.

The expressions obtained for one-dimensional con-
solidation under a number of linear variable loads are appli-
cable to any loading history prescribed as long as it can be
subdivided into several increments of load. It is worth men-
tioning that it may be very useful in embankment design to
plan the most suitable loading history to achieve pre-set de-
grees of consolidation at particular times.

The diagrams U x T produced from the solutions allow a
general overview of the progress of consolidation for a load-
ing programme of three ramp loadings with two resting inter-
vals. They also evidence how parameters n (radial drainage)
and θ (combined drainage) affects the consolidation, although
the logarithmic scale attenuates the differences.

The Viscoelasticity theory provides closed form solu-
tions for the problem of one-dimensional consolidation of a
deposit of clay under embankment loading when partial
submersion of the fill occurs. As far as vertical drainage is
concerned, classical approximate solutions were employed
to obtain the corresponding creep function. Thus, in this
case, two different expressions were derived for early and
late stages of consolidation. For radial drainage, however,
an exact solution was obtained from Barron’s equation. For
combined vertical and radial drainage only one expression
was derived, regarding late stages of consolidation.

The non-dimensional parameter α is quite important in
the analysis of submersion since it affects not only the
amount of final settlement, but also the consolidation rate. In
general, larger α implies faster consolidation, although this
may not be true when vertical consolidation takes place.

The consolidation of a clay layer with drain columns
of finite stiffness is also a variable loading problem easily
tackled by Linear Viscoelasticity. The solution provides
equations to determine stresses and strain on the soil and
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Figure 16 - Progress of the concentration factor (ν) with Tr for
as = 0.02 and β = 0.2.



columns and the average degree of consolidation at any
time taking into account the area replacement ratio and the
modulus of deformation of the drain column.

The parameter β represents the relative stiffness be-
tween the drain column and a fictitious column of soil,
influencing both the amount of settlement and the consoli-
dation rate.
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List of Symbols
as = area replacement ratio
cr = coefficient of consolidation for radial flow
cv = coefficient of consolidation for vertical flow
C1 = constant dependent upon the pattern of drain columns used
Cc = compression index
de = diameter of zone of influence of the soil mass
ds = diameter of the drain column
e0 = initial void ratio
erfc ( ) = complementary error function
h = height of an embankment constructed on the surface of a clay deposit
H = thickness of a clay layer
H(t) = Heaviside function
J(t) = creep function
Jr(t) = creep function for one-dimensional consolidation with radial drainage
J tv ( ) = average creep function for one-dimensional consolidation with
vertical drainage
J tvr ( ) = average creep function for one-dimensional consolidation with
combined vertical and radial drainage
Ks = modulus of deformation of the drain column
mv = coefficient of volume compressibility
n = ratio between radius of the zone of influence of a vertical drain and its radius

′p0 = initial effective stress
q0 = inicial surcharge on the surface of a clay layer
qc = vertical loading stress acting on the surface of the clay layer
qs = vertical loading stress acting on the top of the drain column
rd = radius of a vertical drain
re = radius of the zone of influence of a vertical drain
R(t) = relaxation function
s = centre-to-centre spacing of the drain columns
s = auxiliar variable in the Laplace transformation
s(t) = settlement of the top of a clay layer at time t
s(∞) = final settlement of the top of a clay layer, at infinite time
t = time
Tr = time factor for one-dimensional consolidation with radial drainage
Tv = time factor for one-dimensional consolidation with vertical drainage
Ur = degree of consolidation for one-dimensional consolidation with radial
drainage
Uv = average degree of consolidation for one-dimensional consolidation
with vertical drainage
Uvr = average degree of consolidation for one-dimensional consolidation
with combined vertical and radial drainage
α = mv ∆γ H (non-dimensional parameter related to consolidation with par-
tial submersion of the fill)
β = as ks mv (non-dimensional parameter related to consolidation with drain
columns)
!( )ε s = Laplace transform of ε( )t
ε( )t = average vertical strain at time t
ε( )∞ = final average vertical strain, at infinite time
γb = submerged unit weight of a fill
γt = unit weight of a fill
ν = stress concentration factor

θ = 2 2

2

c H

c f n r
r

v e( )
(non-dimensional parameter related to consolidation with

combined radial and vertical drainage)
ρ = ratio between increment of load and total load applied
σ0 = total stress applied, constant with time
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