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Abstract. The geotechnical properties of soil should be considered for several civil engineering purposes. Geotechnical informa-
tion is used for urban planning, environmental management, slope stability analysis, and foundation design, among others. Given
the importance that geotechnical information assumes in several engineering applications, geotechnical mapping is deemed rele-
vant. Methods for integrating field tests and quantifying estimate uncertainty in the construction of these geotechnical maps is
preferably used in the decision-making process. A methodology to build this kind of maps is proposed based on geostatistical sto-
chastic simulation. Maps covering an area of 4 km2 were built, based on the information derived from 141 boreholes, where stan-
dard penetration tests (SPT) were carried out. Sequential Gaussian simulation was used for building these maps, since it
reproduces data statistics and spatial continuity. The soil resistance to penetration of panels of 100 x 100 m2 was estimated and the
estimation error was calculated. The results demonstrate the appropriateness and usefulness of the methodology for mapping
geotechnical attributes.
Key words: geotechnical mapping, geostatistical simulation, SPT, uncertainty analysis.

1. Introduction

Highly heterogeneous soils impose difficulties in de-
fining geotechnical properties correctly. This heterogeneity
influences the choice of a safety factor to be used in engi-
neering projects. In some situations, the geotechnical engi-
neer adapts previous experiences to tackle the new condi-
tions encountered (Elkateb et al., 2003). Morgenstern
(2000) reported 70% of failure in case studies where local
experience was used to define geotechnical parameters. On
the basis of these results, the authors of this study stressed
the necessity for the use of novel methodologies that can as-
sess uncertainty associated with the estimated geotechnical
properties.

Generally, 0.5 to 1% of the total budget is allocated to
civil engineering projects for application in soil investiga-
tion. For safety reasons, the project engineer tends to over-
estimate the safety factor used in relation to the soil strength
when there is incomplete or inadequate geotechnical infor-
mation. Geotechnicians are aware of the necessity of an ad-
equate soil investigation, including field and lab tests.
Some applications require maps of relevant parameters,
showing their values at unsampled locations with the re-
spective estimation error. These maps provide both the spa-
tial distribution of geotechnical properties and their degree
of uncertainty for risk assessment.

Many projects are not properly investigated in geo-
technical terms, mainly due to budget restrictions. This in-

complete geotechnical investigation leads to the use of in-
terpolation techniques to infill values of relevant soil
parameters at unsampled areas. The most used techniques
include the polygon method, triangulation and weighting
by inverse distance to a power. These methods do not pro-
vide the error associated to the estimate and are not proper
methods to interpolate geological or geotechnical proper-
ties.

Over the past four decades, geostatistical methods
have been used for estimating regionalized variables and
the corresponding estimation error in mining and earth sci-
ence (Matheron, 1963, Isaaks & Srivastava, 1989). Pres-
ently, these methods have been widely applied to other
areas such as petroleum engineering, environmental and
reclamation engineering, fishery, and, also, most recently
in geotechnical engineering (Sturaro & Landim, 1996;
Armstrong, 1998; Chilès & Delfiner, 1999; Phoon & Ku-
lhawy, 1999; Folle, 2002; Folle, 2003).

This paper reports a practical geostatistical applica-
tion in geotechnical engineering, where the variable
mapped is derived from field tests used to characterize soil
penetration resistance. The test used (SPT) is explained in
the subsequent paragraphs and consists of a common index
used for foundation design. The type of foundation for ordi-
nary buildings (from 3 to up to 30 levels) and parameters
such as type and length of the pile foundation are frequently
based on these SPT results, geological information, and lo-
cal experience (Pinto, 2000).
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This study aims at providing better tools for soil char-
acterization used in foundation engineering. Also, areas of
high uncertainty in soil properties should be identified and
selected for additional sampling, in order to reduce engi-
neering risk. These uncertainty maps are frequently used in
mining (Pilger, 2000; Pilger et al., 2001; Souza et al.,
2004), geology (Leuangthong et al., 2004), petroleum engi-
neering (Attanasi & Coburn, 2004), and environmental ap-
plications (Costa & Koppe, 1999) and can be promptly
adapted for geotechnical engineering.

Considering the information provided by Standard
Penetration Tests (SPT) and their spatial variability, this
study investigates the appropriateness of a geostatistical
methodology to map the spatial distribution of geotechnical
properties derived from the SPT test. The map can be gen-
erated at a dense grid using geostatistical simulation.

The simulation framework provides access to the risk
associated to an estimate quantifying its uncertainty. In this
study, sequential Gaussian simulation (sGs) (Isaaks, 1990)
is used to generate multiple scenarios of geotechnical prop-
erties of the soil. A case study illustrates this methodology
generating maps at a 100 x 100 m2 panels from a data set
comprising standardized penetration tests.

2. SPT Test
Soil resistance is deemed relevant for foundation en-

gineering and Brazilian technical standards (NBR-6484,
1999) define the procedure to collect soil penetration resis-
tance, where the test known as Standard Penetration Test
(SPT) consists basically of drilling and sampling soils
along the hole. Also, a Brazilian standard such as
NBR-7250 (1982) depicts two tables associating NSPT with
soil types; one table refers to sand-type soil and the other to
clay-type soils.

The study area was irregularly sampled by 141 bore-
holes, where SPTs were carried out (Fig. 1). The maximum
depth for those drill holes is 26 m, and most of them have
not reached the so-called impenetrable level.

Four main soil types were observed along these drill
holes with a gradational change from one type to the other.
From top to bottom, the soil types are: red clay of medium
consistency, silty red clay with yellow stains and medium
consistency, silty-sandy red clay with yellow stains and
rigid consistency, and silty-sandy gray clay with pieces of
weathered rock very rigid to hard in terms of consistency.
In order to explain the origin of these soil types, the local
geological settings is presented hereinafter.

3. Geological Settings
Generally, the geology of the area comprises basalt

rocks, belonging to Serra Geral Formation (JKsg), and
sandstones and psamites, associated to the Tupanciretã For-
mation (Tt). Both formations are included in the Paraná Ba-
sin (RadamBrasil, 1986). Figure 2 shows a simplified
geological map of the region. Note that the area object of

this study is covered by the basalts from the Serra Geral
Formation.

Serra Geral Formation (JKsg) is composed of conti-
nental toleitic volcanic rocks, usually basalts, dacites, and
rhyolites, with dikes and tubular bodies of diabase. Occa-
sionally, there are lens and layers of intertrapic sandstones
of the Botucatu Formation.

Tupanciretã Formation (Tt) covers part of the volca-
nic basaltic rocks at the north of the area. It is composed
mainly of sandstones, usually reddish, sometimes yel-
low-green, with variable texture, poorly classified, eventu-
ally conglomeratic and composed essentially of quartz and,
subordinately, feldspar weathered to kaolinite.

The soil weathered profile descriptions are related to
the elevation, bedrock, and surface morphology. The mor-
phology of the horizons is presented by Naime (1999) as:

(i) Horizon A well defined and subdivided, brown to
reddish, formed mostly by clay, with some granular mate-
rial, porous, hard when dry, plastic, and sticky when wet.
There is a gradational contact to the lower horizon;

128 Soils and Rocks, 31(3): 127-135, September-December, 2008.

Folle et al.

Figure 1 - SPT data set location.

Figure 2 - Geological Map for Passo Fundo region, depicting the
area studied.



(ii) Horizon B thick with subdivisions, dark red,
clayey texture;

(iii) Horizon C very deep, formed by weathered ba-
salt.

All soil types described belong to the Passo Fundo
unit (Fig. 3) and were developed over basaltic lithologies,
forming brownish humic latosoils, intermediate brownish
and purple latosoils, and latosoils with developed B hori-
zons.

The top soils show an excess of 1% of organic matter
at 1 m depth, defining its humic characteristics. These soils
are derived mainly from basic volcanic rocks and interme-
diate or acidic volcanic rocks.

Soils presented in the study area are reasonably ho-
mogeneous, with few morphological variations and inclu-
sions derived from basaltic rocks. The topography is
smoothly hilly with slopes within 8 to 10 % gradient.
Locally, horizons B and C prevail.

4. Data Set Description
The area sampled is formed by soils derived from the

rock types mentioned before (mainly basalts). The sam-
pling survey was carried out in the residual soils, consisting
of 141 boreholes, and the samples were basically composed
of clay material with few sand and gravel fragments. From
the surface downwards to the bedrock, the residual soil is
divided into three to four layers. The number of layers de-
pends on the location. Each layer exhibits a specific range
of NSPT values.

Therefore, the data set was divided into subsets of sim-
ilar soil typology and mean NSPT values. The limits identify-
ing each soil were proposed to be obtained by plotting the
average of all NSPT values at each depth (max 141) vs. the
depth (Fig. 4). Note the sampling process, i.e., SPT tests
were conducted at every meter, starting immediately below
the borehole collar. It is reasonable to assume a linear trend
between NSPT and depth. This linear trend is shown in the plot

obtained (Fig. 4); however, four changes were observed in
the slope of this trend. Each slope variation of the trend leads
to a possible change in soil type, which in geostatistical
terms would identify different stationary subsets.

Layers I and III are more erratic in terms of NSPT val-
ues than layer II. The slope in the plot NSPT vs. depth (Fig. 4)
for layer II is distinct from the remaining layers. Layer II is
also seen as a transitional zone from a low-resistance soil
(layer I) and high-resistance soil (layer III).

Four groups (layers) were identified in Fig. 4 as follows:
I (0 to 4.99 m), II (5 to 11.99 m), III (12 to 19.99 m), and IV
(20 to 26 m). All these subsets were statistically analyzed and
the results presented as follows (Fig. 5). Due to this criterion
used to split the soil layers into geostatistical domains, the
simulation will be run in 2D. The mean of NSPT value for each
soil interval intersected by each borehole is kept.

Figure 5 presents the histograms for the NSPT values
obtained for each soil layer. Histograms for layers I and II
(Figs. 5a and 5b) show a positive asymmetry, layer III
(Fig. 5c) is practically symmetric, and layer IV (Fig. 5d)
presents a negative asymmetry caused by an excess of high
values. These anomalous high values relate to the fact that
various holes hit the bedrock. The last layer defines the con-
tact with the bedrock. Many tests are known to be inter-
rupted before reaching the bedrock (impenetrable by SPT).
These asymmetric distributions (non-Gaussian) are typical
of earth sciences datasets and are required to be normalized
as it will be discussed hereinafter.

All layers have their NSPT variograms modeled using a
spherical variogram (Journel & Huijbregts, 1978). The
main axes of anisotropy are, respectively, at N90E and N0.
Equations (1) through (4) present the variogram models for
layers I, II, III, and IV, respectively.
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Figure 3 - Soil Map for Passo Fundo region, depicting the area
studied (compiled by Lemos, 1973).

Figure 4 - Depth x NSPT. Slope variation helps in identifying
geostatistical domains.
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The terms in the above equations are:
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where γ(h) is the variogram, C0 is the nugget effect, C1 is the
contribution to the sill from the 1st spherical model, Sph is
the spherical model, a1 and a2 are, respectively, the length of
the minor and major axis of anisotropy, and N0° and N90°,
are, respectively, the azimuths minor and major axis of ani-
sotropy direction.

5. Geostatistical Simulation
Geostatistical simulation provides the framework to

estimate an unknown value and its associated estimation er-
ror. A simulated model is said to be conditionally simulated

if it returns data values at their location, reproducing data
statistics and spatial continuity, i.e., the histogram and
variogram (Journel, 1974). Conditional simulation is con-
structed based on Monte Carlo methods (Chilès & Delfiner,
1999). Journel (1974), David (1977), Journel & Huijbregts
(1978), and Deutsch & Journel (1998) present theoretical
aspects related to the conditional stochastic simulations.

A variable Zs(x) is interpreted as a realization of a
Random Function (RF) and it is characterized by a distribu-
tion function (histogram) and a covariance function or
variographic model (variogram). The idea of simulation is
to generate several realizations zs(x) from the same RF to
provide the means to access local and global uncertainty
(Journel & Huijbregts, 1978). Each simulated point is rep-
resented by a conditional cumulative distribution function
(ccdf), derived from a model of multivariate distribution
function Z(x). In each location x, all distributions functions
are specified through mean and variance values.
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Figure 5 - Histogram of NSPT values for layer I (a), layer II (b), layer III (c), and layer IV (d).



The principle is that, at each simulated point, L,
equally probable results are generated. The simulation is
considered conditional if it matches the data values at their
locations. In addition to the distribution be conditioned to
the data, each simulated point is randomly visited and its
value is added to the dataset. Consequently, the local proba-
bility conditional distribution function is not the same for
different realizations.

5.1 Sequential Gaussian Simulation

The most used stochastic conditional simulation algo-
rithms are the sequential Gaussian (Isaaks, 1990), sequen-
tial indicator (Alabert, 1987), and the turning bands method
(Matheron, 1973). These algorithms are available in most
geostatistical softwares, such as GSLIB (Geostatistical
Software’s Library) (Deutsch & Journel, 1998) or Isatis®.
Amongst the cited methods, the sequential ones, parametric
or nonparametric, are preferentially used.

The main difference between these two groups is the
procedure used for constructing the uncertainty models
(conditional cumulative distribution function - ccdf): para-
metric vs. nonparametric. Sequential Gaussian simulation
(sGs) is based on the multiGaussian formalism (paramet-
ric), whereas the sequential indicator simulation (sis) uses
the homonym formalism (nonparametric).

The multiGaussian approach assumes that all
multivariate distributions of the data follow a Gaussian dis-
tribution. Thus, the application of sGs algorithm demands
that the experimental distribution of the random variable
(RV) Z(x) follows a Gaussian distribution. That is, the RV
Z(x) must be transformed into a RV Y(x) standard normal.
The multiGaussian hypothesis is very convenient, as it al-
lows the uncertainty models (ccdf) to be obtained from a
normal distribution, with mean and variance derived from
kriging (Goovaerts, 1996). Thus, the mean and the variance
of the ccdf in a given unsampled location, x, are equal to, re-
spectively, estimate ySK

*(x) and variance σSK

2(x) of simple
kriging (SK). Then, the ccdf can be modeled as:
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where y is a Gaussian value of the domain [-∞; +∞]. The es-
timated values ySK

*(x) and σSK

2(x) are calculated from n in-
formation y(xα) (α = 1, ..., n) in the neighborhood of x
(Journel & Huijbregts, 1978, p. 566).

After constructing the ccdf, a simulated datum y(l)(xj)
is drawn from it via Monte-Carlo simulation. Generally, the
following stages are common to all stochastic sequential
simulation algorithms (parametric or nonparametric):

(i) definition of a random path, in which each
unsampled location xj (j = 1, ..., N) (point, cell or block of
the grid) is visited only once;

(ii) construction of the uncertainty model (ccdf) at the
location xj - conditional to the n experimental information
in the neighborhood of xj;

(iii) simulation of a value y(l)(xj) from the RV Y(xj), by
drawing randomly from the ccdf (Monte-Carlo simulation);

(iv) inclusion of y(l)(xj) into the data set, representing
an addition to the conditional information to be used in the
following N grid nodes to be visited {y(l)(xj), j = 1, ..., N};

(v) repetition of the stages (ii) to (iv) until a simulated
value is associated to each of the N locations;

(vi) repetition of the steps (i) to (v) to generate L
equally probable realizations of the spatial distribution of
the RV Y(x).

Hence, the set {y(l)(xj), j = 1,..., N} represents a real-
ization of the random function (RF) Y(x) in the physical do-
main defined by the information y(xα) (α = 1, ..., n), in the
normal space. Whereas the set {y(l)(xj), l = 1, ..., L} repre-
sents L simulations of the RV Y at location xj (j = 1, ..., N).
Later, the simulated data set {y(l)(xj) (j = 1, ..., N and l = 1, ...,
L)} is transformed to the original space of the RV Z(x).
Therefore, the value of the RV Z at each location xj (j = 1, ...,
N) is simulated within the domain of variation of the RV
Z(x), through a random procedure, from the ccdf. At each
location, the simulation process generates a distribution,
composed of L values. That distribution can be considered a
numerical approach of the ccdf, i.e.:

F x z n
L

i x zl

l

L

( ; | ( )) ( ; )≈
=
∑1

1
(7)

where F(x; z| (n)) represents the probabilities assumed by
the ccdf at each location xj (j = 1, ..., N) and i(l)(x; z) is an
indicator variable as follows:

i x z
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Sequential Gaussian simulation is based on the multi-
variate normal random function model, which follows the
Bayes theorem. It is demonstrated that there exists equiva-
lence between an image generated from a multivariate dis-
tribution function and that generated from the sequence of
univariate conditional distribution functions (Olea, 1999).
The sequential Gaussian simulation (sGs) algorithm was
applied to this dataset and results are hereinafter depicted.

5.2 Analysis of NSPT variability

Every time one interpolates any geological or geo-
technical attribute at a non-sampled location, given the in-
formation (boreholes) in the local vicinity of the grid node
being interpolated, there is an error associated with this es-
timate. It would be reasonable to assume that the engineer
responsible for the foundation design should have an esti-
mate map with the geotechnical properties relevant for
his/her project, combined with an error assessment (uncer-
tainty associated with the estimates). These errors are asso-

Soils and Rocks, 31(3): 127-135, September-December, 2008. 131

A Procedure to Quantify the Variability of Geotechnical Properties



ciated with (Phoon & Kulhawy, 1999): (i) soil inherent
spatial variability, due to variation in formation conditions
and stress history from one point to another in space; (ii)
measurement errors, due to insufficient control of testing
procedure and equipment; (iii) deterministic trends in soil
properties, such as the increase in soil strength with depth
due to the confining increase in pressure; and (iv) the col-
lection of field data over long time periods.

Following this rationale, the assessment of the error
associated with the estimation of geotechnical properties
(soil strength) using sGs is proposed here. In addition, this
error should be incorporated in risk analysis along the deci-
sion-making process.

The foundation project requires soil-bearing capacity
and the safety factor used in this project is associated with
the degree of certainty one has on the soil properties se-
lected. With the proposed procedure to quantify this uncer-
tainty, the choice of safety factor can be conducted in a less
arbitrary way. In addition, by mapping areas of high uncer-
tainty in soil-bearing capacity, one can locate extra sam-
pling points, in order to reduce locally the uncertainty, if
necessary.

Fifty equally possible scenarios were generated at
100 x 100 m2 grid. This grid is in accordance with the aver-
age panel size used for city planning at the location selected
for this case study. To obtain a panel simulation, a posteri-
ori change of support was used, averaging all point nodes
simulated within the domain of a panel.

A perfect reproduction of histograms and variograms
by the simulated models is unattainable due to uncertaini-
ties in the input statistics. The models should exhibit ergo-
dic fluctuations, and there are some factors which control
the magnitude of this fluctuation. Figure 6 shows ergodic
fluctuations for the variogram using data on normal space.
In order to illustrate the discussed methodology, only the
results from soil layer III are depicted in this paper. The re-
alizations generated by simulation were also checked for
univariate statistics reproduction, and it was found that the
ergodic RF model supports the statistics of the normalized
input data (Figs. 7 a, b and c).

Figure 8 shows the distribution maps of the average
(E-type) of NSPT values simulated at each panel from layer
III. These E-type models are similar to models generated by
kriging (Zingano et al., 1996; Costa, 1997; Goovaerts,
1997).

The simulation of NSPT distribution for all soil layers
ultimately aims at estimating the soil properties and its un-
certainty, incorporating it into the foundation design. For
instance, layer I comprises values of NSPT capable of sup-
porting shallow foundations, whereas layers II, III, and IV
are capable of bearing deep foundation.

Maps of local variability for NSPT values are selected
as an important tool for uncertainty assessment in founda-
tion projects. There are several methods to evaluate and
visualize these local uncertainties from the conditional sim-

ulation realizations (Srivastava, 1994; Goovaerts, 1997).
An uncertainty measure was adopted for the present study,
which is the coefficient of variation (CV) for NSPT value at
each panel.

The maps for CV in each soil layer are presented in
Fig. 9. The values of CV are obtained according to Eq. (9):

CV
Xbl

s

s

=
σ

(9)

where CVbl is the panel-by-panel coefficient of variation;
σs is the standard deviation of the fifty simulated values at
each panel; and Xs is the mean of these fifty values
(E-type).

Maps for the CV show that central region of layers I
and III (Figs. 9a and 9c) present low CV values, approxi-
mately 20%. This area is densely sampled, consequently
showing a lower level of uncertainty compared with the re-
maining sectors. Layer IV (Fig. 9d) has CV values of
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Figure 6 - Variograms of normalized data (layer III - solid line)
showing ergodic fluctuation (dots) at the principal directions of
spatial continuity (a) 0° and (b) 90°.
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Figure 7 - Histograms of simulated models (normal space) selected randomly among 50 realizations. Layer III - simulation 3 (a), 18 (b)
and 24 (c).

Figure 8 - Images showing the mean NSPT value (E-type) at each panel (a) layer I, (b) layer II, (c) layer III, and (d) layer IV.



approximately 10% at the same central area and in the re-
maining regions the values are approximately 20%. Layer
II (Fig. 9b) has higher variability than the other three layers,
reaching 50% in the most extreme zones. On average, the
variability ranges from 20% to 40% in the central area of
layer II.

Layer II has higher variability than the others, possi-
bly due to its transitional characteristics described previ-
ously. This layer is also the region where water level was
detected frequently, which reduces soil strength followed
by an increase in the next dried zone. The relevance in iden-
tifying variability in soil properties is presented in various
papers (Soulié et al., 1990; Folle, 2002 e Elkateb et al.,
2003). Geotechnical engineers are willing to improve the
geotechnical investigation optimizing the whole process in-
cluding: development of better survey methods, reduction
of the period taken for the survey, better definition of the
number of sampling points, and consequently reduction of
the costs involved. Following this interest, this paper intro-
duced a methodology that can quantify the spatial variabil-
ity of soil geotechnical properties to corroborate with these
needs.

6. Conclusions

Several stochastic simulations were generated and
were used to evaluate uncertainty due to variability related
to NSPT values at different soil layers. Sequential Gaussian
simulations proved to be an adequate tool to assess uncer-
tainty associated to NSPT estimate. sGs was used to generate

equally likely scenarios which after combination could fa-
cilitate global and local error measurements. In this study,
only NSPT values were mapped; however, other correlated
soil resistance measures or even other geotechnical proper-
ties could also be used.

Fluctuations around the mean estimated values
(E-type) provide the means to evaluate the confidence in-
tervals on interpolated results. In addition, the methodol-
ogy can be used for planning infill drilling at zones of
higher uncertainty in case risk reduction is desirable.
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