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Abstract. This manuscript aims proposing a methodology for correlating soil porosity to the respective geological units
using geostatistical analysis techniques, including interpolation data by kriging. The site studied was in Lorena municipal-
ity, Paraíba do Sul Valley, southeastern Brazil. Specifically all studies were carried out within an area of 12 km2 located at
Santa Edwirges farm. The database comprehended 41 soil samples taken at different geological and geomorphologic units
at three different depths: surface, 50 cm and 100 cm depth. The geostatistical analyses results were correlated to a geologi-
cal mapping specifically elaborated for the site. This mapping accounts for two different geological formations and a geo-
logical contact characterized by a shearing zone. The results indicate the existence of a significant relationship between the
soil porosity and the respective geological units. The studies revealed that the residual soils from weathered granitic rocks
tend to have higher porosities than the residual soils from weathered biotite gneiss rocks, while the soil porosity within the
shearing zone is relatively un-sensitive to the respective geological formation. The spatial patterns observed were efficient
to evaluate the relationship between the soil porosity, geology unit and the and geomorphology showing a good potential
for correlating with others soil properties such as hydraulic conductivity, soil water retention curves and erosion potentials.
Keywords: geostatistic, sampling, error prediction, porosity map.

1. Introduction
The knowledge of the physical properties of the soil

contributes to improve our understanding of their mechani-
cal and hydraulic properties. However, depending on the
size of the area of interest and the proposed objectives,
awareness of these physical properties, in plot field, can be
very expensive and time consuming. In different research
domains such as agronomy, mining, hydrology and river
basin planning, where large portion of land has to be ana-
lyzed, the plot field rarely contributes to satisfactory re-
sults, requiring assess to spatial variability of soil proper-
ties. In geotechnical engineering, mapping surveys of areas
susceptible to mass movement have provided to be an im-
portant tool to reduce - or avoid - the potential losses from
natural hazards, besides to providing important information
for decision-makers regarding the land use occupation.
Therefore, spatial information can provide a wider view of
the environment studies and allow correlation with other
properties or attributes related to physical landscape ele-
ments.

A practical limitation found in studies of soil proper-
ties is that, generally, the amount of the good-quality field

datasets are scarce for a particular area of study. In the same
way, when one wants to integrate data from other landscape
elements for example, a geological map, the difficulty be-
comes even greater in areas of small dimensions, due to the
lack of thematic maps produced in appropriate scale.

For these reasons, it is important to develop low-costs
methodologies that provide tools for spatial representation
of a certain property. Among the available options, the spa-
tial data interpolation methods are commonly used to meet
these needs. They are capable of predicting the spatia-
lization of a random variable for large or small areas based
on punctual observations (sampled points).

Burrough (1998) states that, when there are enough
data, most interpolation methods produce similar values.
However, in the case of sparse data, such methods have
limitations in the representation of spatial variability, since
they do not consider the location of the samples and then ig-
nore the continuity of the phenomenon. Krige (1951) initi-
ated studies seeking to understand the spatial variability of
concentration of gold, considering the spatial location of
each sample and its interference in neighboring occur-
rences.
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Based on studies of Krige (1951), Matheron (1963,
1971) proposed the theory of geostatistics, known as the
Theory of Regionalized Variables, which gives the theoreti-
cal basis for the application of kriging. According to Vieira
(2000), kriging has the ability to produce better estimates
among the interpolation methods because it is based on two
premises: non-bias estimator and minimum variance esti-
mates.

Several studies were then developed using kriging in
order to describe the spatial distribution of soil properties.
Vieira et al. (1981), for example, investigated the spatial
dependence of the infiltration rate of water on Yolo (CA)
clay loam. In their study, the spatial variability of 1280
field-measured infiltration rate was studied using geo-
statistical concepts. Depending on the correct selection of
samples, it was observed that a minimum of 128 samples
was enough to obtain nearly the same information as with
1280 samples.

Gomes et al. (2007) made use of kriging techniques to
know the spatial distribution of soil density, concentration
of organic matter and soil texture in order to find relations
with land use occupation. The study was carried out with
165 point samples distributed over an area of 47 km2, lo-
cated at Ribeirão Marcela Basin, MG, Brazil. The authors
found that some types of agricultural soil use causes direct
interferences in the spatial distribution of soil attributes.
Thus, they emphasized the importance of the use of kriging
to find critical areas regarding the soil management and,
also, to provide important information for proper planning
of the land use.

Fernandes da Silva et al. (2007) analyzed some geo-
technical properties such as grain size distribution fractions
and plasticity index, in Ubatuba area, north coast of São
Paulo State, Brazil. The purpose of the study was to find
spatial patterns of these properties that allow the estimation
of geotechnical behavior of soils. The authors employed
three interpolation methods (Nearest-neighbor interpola-
tion, Weighted mean and Kriging) using 73 point samples
in order to find the better technique to estimate the spatia-
lization of the geotechnical properties. The results sug-
gested that kriging is a better model to be use in regio-
nalization of the parameters.

From the previous studies presented, kriging tech-
nique has proved to be an important tool for spatial repre-
sentation of soil properties. However, kriging and any other
spatial interpolation method aggregate errors in their esti-
mates, which is often overlooked in geostatistical studies.
In some cases, the error associated with interpolation
method can be so high that causes large discrepancies be-
tween estimates and observed reality.

It is important to know the error associated with the
prediction in order to evaluate the results obtained. Besides,
to validate and to refine the methodology applied it is also
important to seek additional spatial information regarding
the investigated area. This can be done, for example, corre-

lating the spatial of a certain soil property with other field
spatial information previously known, such as geology,
geomorphology and pedology.

Based on the fundaments proposed from Matheron
(1963, 1971), this study investigate the existence of spatial
dependence of the variable porosity (�) for an area of
12 km2 in Lorena municipality, located in the Paraíba do
Sul Basin, São Paulo State. These analyses were done for
three different depths: surface (samples taken between
0 and 20 cm); 50 cm and 100 cm respectively. The study
presents a methodology for correlating soil porosity to the
respective geological unit using geostatistical analysis
techniques, including interpolation data by kriging and the
error involved.

2. Materials and Methods

2.1. Study area

The study area comprises the region of Santa Edwiges
Farm, which is inserted in the region upper Taboão stream
watershed, located in the Paraíba do Sul Valley, Southeast
of Brazil (Fig. 1).

Despite its small size (12 km2), this investigated area
was chosen because it reflects the diversity found in geol-
ogy and geomorphology in the region, which characterizes
the transition between the extensive plains of the Paraíba do
Sul Valley and the coastal mountain chain of Serra do Mar.

Therefore, the Santa Edwiges farm is entire inserted
into a geological context formed by crystalline rocks of
pre-Cambrian age (>500 million years). The map of Fig. 2
shows the various geological units encountered within the
study area: a) metamorphic rocks (schists, gneisses and
migmatites) of the Embu Complex (Hasui & Sadowski,
1976; Carneiro et al., 1978; Landim, 1984); b) igneous
rocks (in most cases are of granitic composition) of the
Quebra-Cangalha Suite (Landim, 1984); c) high deforma-
tion bands (milonites rocks); d) unconsolidated sediments
located in the floodplain of small streams.
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Figure 1 - Location of study area.



Based on Fig. 2 one can see that the northern portion
of the area consists of the Embu Complex. This unit consists
of metamorphic rocks (gneisses) having in its composition
minerals more easily weathered such as mica and feldspar.
Thus, the soils from these rocks are usually fine-grained
soils where predominate clay minerals favoring the devel-
opment of a more impervious and more homogeneous soil.
The soils are usually thicker and have a reddish color be-
cause of the presence of iron-rich minerals such as biotite.

The unit Granitoid Quebra-Cangalha occurs in the
southern area. It is composed predominantly of white to
grey leucocratic granites. Rocks of this unit are composed
of minerals more resistant to alteration such as quartz and
feldspar. Due to the presence of these minerals, soils are
predominantly whitish, have a sandy-clay constitution and
with a significant presence of mineral fractions of coarser
material, such as silt. The coarser texture of these soils and
the absence of vegetation, favors the occurrence of erosion
processes in advanced stages, such as ridges and ravines.

Milonite rocks account for about 10% of the total area
studied. These areas were subjected to intense tectonic ten-
sions in ductile conditions, that is, at depths greater than
10 km (Ramsay, 1980). For this reason, they have a well de-
veloped foliation and the presence of well-structured and
fine-grained minerals like mica and chlorite as a result of
processes of retro metamorphism due to percolation of flu-
ids in shear zones. While on the surface, the intense folia-
tion of these rocks facilitates the processes of weathering
and the formation of soils with a high proportion of clay.

The unit Fluvial Terrace and the unit Unconsolidated
Sediments are associated with a fluvial plain Ribeirão Ta-
boão and its main tributaries. In this area are identified
paleo-terraces with pelitic sediment composition (silt and
clay) and, secondarily, sand and angular pebbles of quartz
and feldspar. Dark-colored sediments are also observed in-
dicating the presence of rich organic soil.

Regionally, this area is inserted in the geomorpho-
logical unit of Mid Plateau of the Valley of Paraíba do Sul

which was described by Ponçano et al. (1981) in the Geo-
morphological Map of the State of Sao Paulo. The diversity
of geological substrate as described above is directly re-
sponsible for the wide variation of reliefs and soils found in
the Santa Edwiges farm.

On the scale adopted (1:10.000), it was possible to
identify, on the basis of morphometric elements of terrain
(hypsometric and slope) three distinct geomorphological
units: Ridge Escarpments, Mountain with Moderate to
Gentle Hillslopes and Smooth Convex Surface. These units
can be observed through a digital elevation model (DEM),
developed by Lima (2005) (Fig. 3). The description of these
units is as follows.

Ridge Escarpments - located in the northern portion
of the study area is characterized by relief with steep slopes
(>30%) and large amplitudes of altitude (>300 m). Charac-
teristics of this unit include deep narrow valleys and high
drainage density. The soils associated with Ridge Escarp-
ments are, predominantly, young residual soil and sapro-
lite.

Mountain with moderate to gentle hillslopes - occu-
pies the central and northern area of study. They feature
rounded shapes with medium slopes (>15%) lower than
elongated ridge escarpments and amplitudes of altitude
ranging between 100 and 300 m. The valleys are more ex-
tensive with the presence of alveoli and medium drainage
density. The profiles of weathering in this region vary
widely, with sites presenting large thicknesses of trans-
ported soil.

Smooth Convex Surface - represents the transition
between both units above-mentioned situated in the central
portion of the study area. It corresponds the areas of very
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Figure 2 - Geological Map of Fazenda Santa Edwiges, drawn to
scale 1:10.000, adapted from Rodrigues & Milanezi (2005).

Figure 3 - Digital Elevation Model for Fazenda Santa Edwiges
identifying the existing landscape units: Ridge Escarpments
(black), Mountain with Moderate to Gentle Hillslopes (light gray)
and Smooth Convex Surface (dark gray). Adapted from: Lima
(2005).



low slope (<5%) with low-altimetric variations (<50 m)
usually related to alluvial plains. In this region predomi-
nates thicker layers of mature residual soil.

2.2. Geostatistics

The geostatistics is able to provide estimates in a con-
text governed by a natural phenomenon with distribution in
space. It assumes that the values of variables are auto-
correlated spatially Landim et al. (2002), , such that sam-
ples close together in space are more alike than those that
are further apart, and is based on the Theory of Regionalized
Variables, proposed by Matheron (1963).

Geostatistics uses the variogram as one of its primary
tools (sometimes called semivariogram) to measure the
spatial variability of a regionalized variable, and provides
the input parameters for the spatial interpolation of kriging
(Krige, 1951; Webster & Oliver, 1993.)

2.2.1. Variograms

The variogram is used to investigate the relationship
of the distribution of variable (z(x)) in space. This tool is
able to measure the degree of spatial dependence between
samples over a specific support. The expected squared dif-
ference between paired data values {z(x) and z(x + h)} to
the lag distance h, are simply used for its construction as-
suming stationarity in increments, (Landim, 2006).

To obtain an estimate of the parameters a theoretical
semivariogram model is used to define the weights of the
kriging function. One can formulate an estimator for the
semivariogram which may be calculated thus:
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where Y(xi) represents the value of the data at location xi; h
is the displacement between the data pairs; and H(h) is the
number of such data pairs in the region, which is given by:

N(h) 	 {(xi , xj) : xi - xj = h; i, j = 1,..., n} (2)

When there is spatial dependence, usually, the closest
two measures are more alike than two others that are further
apart, allowing �(h) to increase as the distance h increases
too. However, from a certain distance, it will not find re-
lated values with z(h) because the spatial correlation
between the samples ceases to exist (Goovaerts, 1997; Lan-
dim & Struraro, 2002; Gumiaux et al., 2003). The semi-
variogram point where the data present no spatial depend-
ence, maintained around the same semi-variance (y axis)
and where it is established a straight line in the graph, called
the “sill” (C). The distance from the origin (x and y coordi-
nates equals zero) to the sill, is called the “range” (a), which
represents the radius of influence of sampling points on its
neighborhood, indicated by the distance at which the vari-
ance stabilizes (Fig. 4).

By definition, �
�� should be zero, but in practice it is
noticed that there are cases where as h approaches zero,
y(h) approaches a positive value called “nugget effect” or
“nugget” (C0). This parameter demonstrates the discontinu-
ity of semivariogram for distances smaller than the smallest
distance observed among samples. The nugget effect is the
value of semi-variance for the distance zero and represents
the component of spatial variability that can not be related
to a specific cause, that is, random variability (Camargo,
1997), or also to be linked to errors in measurement.

2.2.2. Kriging

The kriging method uses information from the theo-
retical variogram model to find the optimal weights to be
associated with points with known values (sampled points)
which will estimate the unknown points. In this respect, it is
understood as a series of techniques of regression analysis
that seeks to minimize the estimated variance from a previ-
ous model, which takes into account stochastic dependence
among the data distributed in space (Matheron, 1971;
Isaaks & Srivastava, 1989).

The difference between kriging and other methods of
interpolation is the way the weights are distributed in the
different samples. For traditional methods, such as Simple
Linear Interpolation, all samples have weights equal to 1/N
(N being the total number of samples). In the Inverse Dis-
tance Weighting (IDW), the weights given to samples are
related to the inverse of the distance that separates the esti-
mated to the observed values. In the case of kriging, it is the
weighted mobile average of values observed in the neigh-
borhood where the closest neighbors have more weight
and, the neighbors further apart, have increasingly smaller
weights, zero and even negative values (Cressie, 1993;
Ribeiro Junior, 1995).

Moreover, the kriging provides unbiased estimates
and minimum variance. Unbiased estimates indicate that,
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Figure 4 - Parameters of the semivariogram. Adapted from Ca-
margo, 1997.



on average, the difference between the estimated and ob-
served values, through a sampling, for the same point must
be zero; and minimum variance means that these estimators
have the smallest variance among all unbiased estimators
(Camargo, 1997).

2.3. Sampling

One of the main questions in studies involving inter-
polation methods refers to the amount of samples needed to
obtain representative results. Generally, the size of the
study area is taken as reference. For geotechnical maps in
detail scale of 1:10.000, Matula & Pasek (1984-apud Zu-
quette; Gandolfi, 2004) suggest minimum sampling be-
tween 10 to 25. For this scale, Zuquette (1987) recommend
15 sampling points at minimum with a distance between
points egual to 258 m. However, some authors, like Web-
ster & Oliver (1993), assert that there is no a specified mini-
mum number of samples for to realize geostatistical studies
and emphasize the importance of the findings being com-
plemented by technical knowledge or information of areas
similar to the study area.

Due to the wide diversity of landscape of the study re-
gion, set in rugged terrain, a specific number of samples
were not previously determined. The study sought another
path, where the database was developed in several stages to
achieve desired quality, guided from observation of the
spatial distribution of the variable analyzed and also based
on the error attributed to the process. The sampling process
also sought to include all geological units in order to search

possible correlations between the pattern of spatial porosity
and the Geologic Map shown in Fig. 2.

2.4. Geostatistics procedures

The procedures adopted for the application of geo-
statistics approach permit the evaluation, at each stage, the
quality of data and the partial results obtained and seeking
new solutions to improve the final results. Figure 5 summa-
rizes the step-by-step procedures used to prepare the map
for predicting porosity and the different options for certain
situations (Camarinha et al., 2008). The steps were orga-
nized in three main stages: 1st stage - identifying and pre-
paring data (from step 1 to 5), 2nd stage - analysis of data
(step 6 to 9) and 3rd stage - optimization of the process (step
10 to 13).

2.4.1. Definition and preparation of data

After the definition of the study area, Santa Edwiges
farm, the total porosity was chosen as the variable of soil
being analyzed by the present proposals due to two factors:
a) easy in the sampling process and laboratory testing and
b) association with the infiltration process and water move-
ment in soil.

The next step was the establishment of the database,
which originally were constituted of 30 georeferenced sam-
ples, in continuation of the field works of Domingos
(2004). Each sample is constituted of the following param-
eters: total porosity, natural and dry specific gravity, mois-
ture content, void ratio and specific gravity of the grains
evaluated through the classical soil mechanics approach at
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Figure 5 - Schematic chart proposed for the procedures adopted in the preparation of a map to predict desirable quality (Camarinha et al.,
2008).



the Laboratory of Soil Mechanics, UNESP/FEG. All these
parameters were obtained at 3 different depths: surface
(samples taken between 0 and 20 cm), 50 and 100 cm.

2.4.2. Data analysis

In this study, the establishment of a georeferenced da-
tabase was made by inserting new points, one by one, using
a Geographic Information System (ArcGIS® 9.2 and 9.3
versions) available at the Laboratory of GeoSpatial Analy-
sis (LAGE). Then, the values of various physical indexes
known were assigned, among them the porosity, the param-
eter chosen for this study.

From these data, it was aimed to elaborate a partial
map to predict the special distribution of soils porosity and
also the error associated with the estimates. This error map
is prepared analogously to the prediction of any variable.
However, instead of using for each point the known value
of the variable, it is used all design points on prediction in
order to estimate the values . This error exists due to the fact
that kriging considers the influence of neighboring samples
to estimate the values in any location; even if there is al-
ready a collected sample in that place. Thus, the estimated
value is not necessarily equal to the actual value of the field
sample. Both maps are made using the extension Geosta-
tistical Analyst, ArcGIS® program. The theoretical frame-
work used in the routine of the program is presented in 0.

It is important to observe that in the steps preceding
the drafting of the final prediction map (step 14, Fig. 5),
some statistical analysis (step 7) such as verification of the
histogram, cross-validation, trend analysis and so on, will
not be carried out in detail. This is done because the meth-
odology could become impractical. Then, every time it be-
comes necessary to draw up a map of preliminary predic-
tion (step 9). Nevertheless, attention will be focused just on
the obtaining variograms that are able to verify spatial de-
pendence of the study variable.

2.4.3. Process optimization

The quality of dataset collected is evaluated from the
spatial and exploratory analysis (histograms, verification of
clusters etc.). Depending on such assessments, one can ver-
ify whether the dataset provides sufficient conditions for
the generation of reliable maps prediction (Houlding,
2000). If this is not checked, it is possible to use dataset to
get information that could guide the development of the
next steps of the research. Then, it is possible to devise
better strategies from sampling and then avoid the difficul-
ties encountered previously.

Before heading to the final steps which involve the
geostatistics, it is necessary that the dataset show a desir-
able quality in accordance with the reality observed in the
field. This assessment is made by comparing the real values
of the variable, taken in the field, and the preliminaries val-
ues estimated by kriging. Only after achieving the desired

quality, further studies will be directed to deep analysis in
order to provide the final maps.

The analyses of this step make possible to verify the
prediction error distribution, the existence and representa-
tiveness of the variogram and, besides, whether the actual
result is consistent with that expected for the variable stud-
ied (Camarinha et.al, 2008). For all the preliminary steps
were generated experimental semivariograms. However, in
this paper, only the semivariograms for the final stage were
presented.

3. Results and Discussions

3.1. Procedure for the prediction of the porosity maps
and the associated error

The analysis started with 30 existed samples collected
and tested at the Laboratory of Soil Mechanics,
UNESP/FEG. Figure 6 shows the location of each sample
within the Santa Edwiges Farm. Its spatial position and the
porosity values for each depth (samples taken between 0
and 20 cm, 50 cm and 100 cm) are presented in the table.

Based on this initial database, the first analysis was
carried out to produce a map with the prediction of the sur-
face porosity and the associated error of the estimate
(Fig. 7). The figure presents the first map generated, in
which the darker lines and surfaces represent where there is
higher prediction error and higher porosity, respectively.

In this first preliminary map, shown in the Fig. 7(A),
the regions near the physical boundary of the study area, es-
pecially in the north portion, identify areas with greater un-
certainty, for this reason, a new set of soil sampling were
carried out in this area as illustrated in Fig. 7(B). These
samples also allowed the verification whether the number
of samples is representative regarding the different geo-
logic units within the study area.

From the results obtained with these new samples, a
comparison was made between the values of porosity esti-
mated by kriging (Fig. 7A) with the actual values deter-
mined from laboratory tests (Table 1).

The results shows that only two points (34 and 35),
show the real values quite discrepant from those estimated
by the kriging method. Considering the size of the study
area (12 km2) and the low number of samples at this stage,
this initial comparison of the data reflects a substantial
quality of the interpolation model used.

Although the quality of these preliminary results were
acceptable, it was produced another map with the predic-
tion error using the new dataset with 38 sampled points.
Maps 1 and 2 in Fig. 8 represent the distribution of the error
for both cases analyzed and indicate the region of new soil
investigation.

From map 2 in Fig. 8 it is still possible to observe the
existence of a region with high error at the northwest por-
tion of the area, which means that the predicted porosity has
low accuracy. Based on this observation, it was sought to
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Figure 6 - Location and attributes of the first 30 samples.

Figure 7 - (A) Prediction of surface porosity and the distribution of error associated; (B) the new locations of soil sampling.

Figure 8 - Maps of error associated with the prediction of surface porosity: (A) database with 30 samples; (B) database with 38 samples.
Map (C), location of the 3 new soil samples.



collect three new samples in this region, indicated by the sam-
ples 39, 40 and 41 located at the right on the map in Fig. 8.

At this stage of the analysis, the sampling procedure
was completed with 41 samples to create the final map.
Their spatial coordinates and values of porosity for the
three depths analyzed are shown in Table 2. No sampling
was made at the extreme southern and western parts of the
study area because access difficulties (steep slopes and
dense forest).

Before carrying out the final kriging process the
quality of data was evaluated in order to determine
whether they present a good spatial dependence and char-
acteristics that are consistent with the basic principles of
geostatistics.

3.2. Final maps of porosity

To create the final maps with the predictions of the
porosity for the three different depths, it is necessary to in-
vestigate whether the distribution of the porosity variable
allows the application of geostatistic methods (structural
and exploratory analysis). After this step, it was analyzed if
the results of the predicted porosity were consistent with
the values from the literature that’s correlate porosity re-
garding geological units.

3.2.1. Histograms

To examine the quality of database, some authors pro-
posed the use of histograms to verify the kind of data distri-
bution (Folegatti, 1996; Houlding, 2000). Folegatti (1996)
states that for variogram adjustments, the normal distribution
of data is just desirable but not a necessary prerequisite. If the
distribution found of data is not normal, but is reasonably
symmetrical, it is possible to accept the assumptions neces-
sary for the construction of the semivariogram.

The traditional histogram only shows the frequency
of some bands of variable values, for example points hav-
ing porosity between 0.41 and 0.43, but the distance be-
tween samples is ignored. Therefore, although this is not a
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Table 1 - Comparison between the values of soil porosity ob-
tained by laboratory analysis (Real value) and estimated by
kriging (Estimated value).

Sample Estimated
value

Real value Real error Estimated
error

31 0.490 0.474 0.016 0.033

32 0.495 0.520 0.025 0.048

33 0.495 0.465 0.030 0.061

34 0.510 0.414 0.096 0.188

35 0.505 0.420 0.085 0.169

36 0.482 0.489 0.007 0.015

37 0.475 0.459 0.016 0.034

38 0.492 0.477 0.015 0.031

Table 2 - Final dataset with 41 sampling points and their attrib-
utes.

Sample Coordinates in UTM Porosity (�)

X Y Surface 50 cm 100 cm

1 490663 7470340 0.51 0.46 0.51

2 490651 7471193 0.42 0.4 0.41

3 490839 7472196 0.5 0.52 0.43

4 490638 7470914 0.49 0.4 0.46

5 489677 7470758 0.47 0.37 0.36

6 489664 7470842 0.5 0.52 0.5

7 490034 7470719 0.45 0.55 0.45

8 490144 7470868 0.54 0.52 0.53

9 490142 7470946 0.51 0.44 0.46

10 490541 7469925 0.46 0.49 0.44

11 490193 7470021 0.46 0.46 0.45

12 488892 7470923 0.6 0.58 0.53

13 489506 7471225 0.5 0.49 0.4

14 489983 7470585 0.42 0.45 0.42

15 491789 7469721 0.6 0.46 0.48

16 491596 7469830 0.52 0.5 0.49

17 490767 7470114 0.53 0.46 0.43

18 492348 7470712 0.58 0.51 0.56

19 491953 7471043 0.61 0.46 0.53

20 491452 7471027 0.47 0.48 0.51

21 491376 7470901 0.51 0.45 0.44

22 489854 7473350 0.47 0.48 0.5

23 490568 7472693 0.5 0.44 0.5

24 490185 7473099 0.47 0.59 0.57

25 492399 7471405 0.49 0.5 0.56

26 491764 7471779 0.51 0.47 0.5

27 491940 7471615 0.52 0.44 0.48

28 491550 7471725 0.5 0.43 0.43

29 491368 7472015 0.54 0.5 0.45

30 490395 7471591 0.49 0.45 0.53

31 491471 7473389 0.47 0.48 0.48

32 491194 7473517 0.52 0.49 0.39

33 491673 7472839 0.47 0.56 0.51

34 491873 7472103 0.41 0.44 0.43

35 491839 7472453 0.42 0.38 0.42

36 490129 7473522 0.49 0.49 0.57

37 489625 7473842 0.46 0.42 0.53

38 489422 7473598 0.48 0.51 0.46

40 489707 7472633 0.45 0.51 0.55

39 489670 7473159 0.48 0.54 0.51

41 489361 7472539 0.51 0.52 0.5



common practice, it was established relations between the
intervals of higher frequency of the histogram and the loca-
tion of samples which is composed (Fig. 9). This analysis
can help identify whether the most similar samples are lo-
cated close or far apart.

From Fig. 9, it is observed that both results, on the
surface as well as at 100 cm depth are consistent with one of
the main principles of the geostatiscal approach that state
that samples taken closer together are more similar on aver-
age (ESRI, 2001; Nicol et al., 2003). For the depth of
50 cm, similar samples are scattered throughout the region
and are far from each other.

3.2.2. Variograms

The analysis was performed aiming the identification
of the semivariogram model that best fits the distribution of
points. This step is undertaken by using the ArcGIS® soft-
ware which seeks to establish an approximate semivario-
gram via the observed distribution. Figure 10 represents
this check and, when the parameters that define them are
indentified, they are highlighted: (a) range, (C) sill and (Co)
nugget effects. Therefore, the variogram was fitted by a
spherical theoretical curve with a nugget and used for sub-
sequent analysis.

It is possible to observe at Fig. 10 that the data col-
lected on the surface (Fig. 10-a) .and at 100 cm depth

(Fig. 10-c) showed a spatial distribution which allowed the
adjustment of the semivariogram model. On other hand, the
dispertion of the data for the depth of 50 cm (Fig. 10-b)
made impossible to adjust any theoretical variogram. For
this reason, it was impossible to create prediction maps
from kriging method for 50 cm depth with the risk of gener-
ating inconsistent results. Therefore, the further investiga-
tion was carried out for these two depth, in order words, the
kriging analyses were applies to predict surface and at
100 cm depth porosities.

One of the most important steps is to find an theoreti-
cal variogram bases on experimental variogram (circular,
spherical, gaussian, among others), which best approxi-
mates to the observed distribution. From the theoretical
variogram chosen, the interpretation of the spatial correla-
tion structure using krigings inferences is made (Camargo
et al., 2004; Silva, 2005). Using the Geostatistical Wizard
tool - which makes up the Geostatistical Analyst extension
of ArcGIS, it was analyzed the variability in both depths
(superficial and 100 cm depth). Thus, it was obtained the
variograms presented in Fig. 11 for both depths using the
Spherical model as a model for the theoretical variogram.

3.2.3. Search neighborhood settings

It is common in practice to specify search neighbor-
hood that limits the number and the configuration of the
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Figure 9 - Histograms of the spatial distribution - a) surface, b) 50 cm, c) 100 cm.



points that will be used in the predictions. There are two
controlling mechanisms to limit the points used: specifying
the shape of neighborhood and establishing constraints on
the points within and outside the shape (ESRI, 2001).

From the Geostatistical Wizard tool, it is possible to
choose the number of surrounding samples that will influ-
ence the estimation for a non-sampled location (Neighbors
to Include), that is, this number of samples will be included
inside the search neighborhood. This settings is carried out
by the user, generally by trial and error, verifying the num-
ber which provides the highest root-mean-square (RMS)
and which gives value closer to unity.

For this settings, it is common to divide the search
neighborhood in sectors because it contributes to a more
homogeneous inclusion of the neighbors samples. For the
present work, the search neighborhood was divided in four
sectors in order to always use samples from different por-
tions of the area. It was set to included three samples per

sector, always including at least two samples, because in
some locations of the search neighborhood can have insuf-
ficient samples, requiring its extrapolation (see Fig. 12).

The last adjustments made before the generation of
the final maps is the definition of the geometric shape of the
search neighborhood. Generally, the parameter range
shapes the search neighborhood, which acquires the shape
of a circle with radius exactly equals to it. However, it is
possible to modify these settings if there are explanations
for realize such changes.

For this present research, it was not used a circular
shape. A factor of anisotropy for providing an ellipse shape
was intentionally used and rotated to 40º. This settings fa-
cilitates the use of samples with a higher degree of similar-
ity, reducing the probability of samples with different
properties influencing the estimates and, thus, improves the
quality of result. These settings were done in accordance
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Figure 10 - Variograms for the depths: (a) surface, (b) at 50 cm and (c) at100 cm.

Figure 11 - Directional variograms obtained: a) surface porosity and b) porosity at 100 cm.



with the Geological Map (Fig. 2), which can be observed a
shear zone with same orientation.

Figure 12 shows the ellipse shape of the search neigh-
borhood for the surface porosity data, with 1500 m and
800 m for major and minor semi-axis, respectively. The
value of 1500 is nearly the same value of the range parame-
ter observed in directional variograms (Fig.11).

The same criteria were used for the settings used to
porosity data at the 100 cm depth. The only modification
was the value adopted by major and minor semi-axis, which
was set to 1200 and 600 m, respectively. This reduction was
necessary because higher semi-axis values have implied in
lower RMS and the values predicted to porosity have pre-
sented values nearly equal throughout the area.

3.2.4. Porosity prediction by kriging and associated error

The next step of the calculation is the application of
kriging with the established parameters such as, the semi-
variogram and respective direction, the size of the area
search, number of neighbors included. The software
ArcGIS® is now able to run the mathematical algorithm to
calculate the spatial value of the porosity as presented in
Fig. 13 for the two investigated depth.

The kriging method also allows the knowledge of the
distribution of the error associated with estimates as ex-
plained in section 2.4.2. The quality of the maps for predic-
tion of porosity presented in Fig. 13 depends essentially on
the distribution of the error existing in the methodology.
Figure 14 shows this distribution error for the two depths
investigated. For the two maps, the darker areas indicates
higher error which means that the predicted porosity is less
reliable at this regions and, on the other hand, lighter areas
indicate good quality of the prediction.

3.3. Discussion

For geotechnical mapping based on geostatistical
analysis, the number of sampling must be sufficient.
Iincreasing the number of samples will result in a better
representativeness of the variable on the proposed model,
reducing the spread of the error. Unfortunately, there are

some site characteristics, topography, vegetation, which
field works become restricted.

In order to avoid insufficient data or excessive field
activities, the proposed methodology permits the identifi-
cation of areas with some peculiarities which is indicated
by the error values. This behavior was observed in points 34
and 35, where the porosities are different from the samples
that make up your neighborhood, requiring the increase of
sampling process in this region for statistical analysis to be-
come more consistent. This specific area can also charac-
terize a particular geological condition, which must be
considered individually.

The geostatistics analyses made from parameters col-
lected at surface and at 100 cm depth gave the spatial de-
pendence which allowed the adjustment of the semivario-
gram model, allowing the use of kriging of the spatial
porosity predictions. This analysis was not possible for the
depth of 50 cm due to the scatter of the field data. In this
case, a more detail field investigation is required to under-
stand the reason of such variability. Depending on the geo-
morphology, the variability can be attributed also to the
thickness of this intermediate layer and detail investigation
must be carried out in small areas.

In general, Fig. 14 indicates that the data collected on
the surface have better representativeness (lower error)
when compared with 100 cm depth. For the surface data,
there is a larger amount of samples that have similar values
and are spatially close together. This fact represents a
greater homogeneity of the surface porosity throughout the
study area.

The analysis for 100 cm depth showed lower porosity
when compared with the surface porosity. This fact can be
explained by the interference of the rooting system of the
plants at shallow depth which contributes to more porous
soils.

Comparing the predicted maps of porosity with the
geological map developed in scale 1:10.000 (Fig. 2), it is
possible to make some considerations regarding the results
of the geoestatistic analyses with the geological units.
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Figure 12 - The Geological Map and the adjustments done to Search Neighborhood’s shape.



The geological unit “Granitoids Quebra-Cangalha” is
mainly composed of leuco-granite, which occupies the en-
tire southeast study area. The soils from this geological unit
have, mostly large amount of coarse material, sand and silt,
characteristic of young residual soils, little thick layer, het-
erogeneous and that would be classified as Cambisols in
Pedology. According to the literature, it is expected that
these soils have porosity in order of 55% at the surface and
reducing with depth. Observing the porosity maps in
Fig. 13, it can be observed that the measured and predicted

spatial porosity varies from 53% at the surface to 43% at
100 cm depth. This difference in porosity with increasing
depth is one of the factors responsible for the physical con-
ditions that impose restriction to water infiltration process
and can induce erosion processes at Santa Edwiges farm
(Santos, 2007).

The other geologic unit, is consisted of mylonitic
rocks, in which is inserted a shear zone with NE-SW direc-
tion, Fig. 2. Due to the rocks formation derived from retro-
metamorphism and having many foliation plans, the weath-
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Figure 13 - The final prediction maps generated for the surface porosity (a) and at 100 cm depth (b).

Figure 14 - Maps of the distribution of error at (a) surface and (b) 100 cm depth.



ered processes are likely to produce changes in surface and
to produce thin soils with a predominant clay fraction. In
the other hand, the susceptibility of erosion of these rocks
often causes them to be associated with relatively low re-
lief. In fact, this is what is observed in the study area, where
the mylonitic zones occupy areas of relatively low height
compared to the other geological units such as Granitoids
Quebra-Cangalha and the Embu Complex. In the area crop-
ped by the shear zone, the porosity does not show signifi-
cant variation depending on the depth, varying from 38% to
48% in both cases.

The Embu Complex has a wide variety of rock types,
but in the northern portion of the farm there is a predomi-
nance of gneissic rocks rich in biotite. The soils of this unit
are well developed, mature residual soils with clay texture,
thick and homogeneous, which would be classified as
Latossolos. The correlation between the sequence of
gneissic rocks and predicted maps of porosity indicates an
increase of porosity with depth, from 45% to 53%, particu-
larly at the northern end of the study area. This increase
might be related to conditions of good drainage and water
circulation within these soils, is also an indication that they
do not have a high degree of compaction to a meter deep.
However, in the eastern portion of the Embu Complex,
there was a reverse situation, where the values of porosity
were higher at the surface (55%). However, this specific
situation should be better assessed by being in a region
where the error associated with the estimates was high
(Fig. 14), thus requiring a larger number of samples.

These considerations suggest a relationship between
the spatial patterns of porosity and units of the geological
map presented at scale 1:10.000. With increasing depth, po-
rosity increases in the area of granite rocks, reduces in the
area of gneissic rocks rich in biotite and remains relatively
unchanged in the fields of rocks strongly deformed (shear
zones). In the western portion of the study area, where large
errors were found associated with scarcity of samples, the
model was not efficient for this analysis, requiring a larger
amount of data for future characterization of this area.

4. Final Considerations

This manuscript presents a methodology for correlat-
ing soil porosity to the respective geological units using
geostatistical analysis techniques, including interpolation
data by kriging. Therefore, the comparison between a po-
rosity prediction map - based on geostatistical approach -
and a geological map constitutes a different way of compar-
ing these two parameters. Furthermore, the “step by step”
method presented in this paper (Fig. 2), in which each sam-
pling procedure was used as a basis for the next step, may
be considered a useful method to produce better prediction
map for geotechnical parameters.

The proposed methodology permits the identification
of areas with some peculiarities, which are indicated by the
error values. This analysis helps to avoid insufficient data

or excessive field activities. The behavior observed in
points 34 and 35, where the porosities are different from the
neighborhood, indicates the necessity of extra soil sam-
pling in order to evaluate if it was a lack of data for
geostatistic analysis or a specific area that must analyzed
separately.

For two depths the geostatistics analyses using
kriging were possible because the data shows spatial de-
pendence, verified by the semivariogram constructions.
This analysis was not possible for the depth of 50 cm due to
the dispersion of the field data. Depending on the geology
and the geomorphology, the variability can be attributed
also to the thickness of this intermediate layer and detail in-
vestigation must be carried out in small areas.

It can be noticed that the database used can still be
complemented in order to minimize the prediction error
and provide a better quality of the results. Even with these
matters, the study confirmed the existence of spatial pat-
terns between spatialization of the soil porosity and geol-
ogy units, which represents a potentiality for correlating
with others soil properties, such as hydraulic conductivity,
soil water retention curves and erosion potentials.
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