T. Espósito, L.R. Palmier

Abstract. One of the procedures adopted in a Safety Management System is the use of Risk Analysis for which analytical, iterative, descriptive and qualitative methods, such as the FMEA "Failure Modes and Effects Analysis", have been applied in order to identify and analyse potential failures from a given failure mode, its causes and consequences, as well as the means of detection and prevention of failure modes and mitigation of their effects. In Brazil the FMEA method has been used to evaluate the safe conditions of tailings dams. On the other hand a specific tool for the Risk Analysis of dams, the LCI "Analysis by Diagrams Location, Cause and Failure Indicators" semi-quantitative method, has been developed and in the United Kingdom under the name of "Risk Management for UK Reservoirs" and applied in Europe but not for tailings dams. Recently the LCI MOD-REJ version – an adaptation of the LCI method – has been proposed and applied to one Brazilian tailings dam to explicit deal with the Risk Analysis of this type of structure. Considering the promising results of the former application, the aim of this paper is to evaluate the LCI MOD-REJ version applicability and efficiency by comparing the results of its and the FMEA method applications to two Brazilian tailings dams. **Keywords:** tailings dams, risk analysis, LCI, LCI MOD-REJ, FMEA, safety management.

1. Introduction

Tailings are the inevitable consequences of the ore treatment processes, being generated in parallel to the product of interest. Nowadays, these tailings are produced in large amounts, affecting qualitatively and quantitatively the environment. The large production of tailings has generated a growing concern in companies that seek to minimize environmental impacts and costs associated with the processes of containment and disposal of this material. Thus, the tailings have been the subject of great interest of mining companies, which have been looking for inexpensive and safe alternative disposal of these materials. Among the various methods, the deposition of tailings surface using containment of tailings dams has been a preference of Brazilian mining companies. Such dams may be constructed in stages, with successive and raisings over time and in many cases the tailings may constitute the building material (Esposito, 2000). Nonetheless, tailings dams failures continue to occur despite the modern technology available for their design, construction and operation. The consequences of these failures have been economic losses and environmental degradation, and, in many cases, loss of human life. The main causes of the failures include, in some cases, complex geotechnical characteristics that require special care to overcome the adverse conditions.

However, the causes are also possible situations to be solved with the use of already available technologies. This demonstrates the necessity of a more systematic application of the current specialized knowledge. In this sense, "Tailings Dams Engineering" must act in the design, construction, operation, monitoring and maintenance, as well as in emergency situations, and deactivation and decommissioning of tailings dams. The dam security can be achieved in the light of an effective Safety Management. In this context it is worth the use of the Risk Analysis procedure on the Safety Management System of Tailings Dams, which aims to estimate the probabilities of failure events of the components or system and the magnitude of the consequences. However, that application in Geotechnics is not common, although users of this tool in conventional dams (except tailings dams) perceive an increase in the practice of these structures safety, as well as a better understanding of their behaviour. It is concluded that the Risk Analysis in Geotechnics, although not yet a routine application, can be extremely useful in works whose potential risks are high and associated with important consequences such as in tailings dam, as it allows to manage the risks efficiently.

In light of these considerations the aim of this paper is to discuss the application of two Risk Analysis methods, the FMEA and an adapted version of the LCI method (LCI MOD-REJ), to two Brazilian tailings dams.

2. Principles and Procedures of the LCI Method "Analysis by Diagrams Location, Cause and Failure Indicators"

In the past, risk assessment methodologies, as developed for use in other industries, have not been applied to dams and reservoirs on a regular basis. According to Hughes *et al.* (2000), this fact can be explained by the following reasons: the data inadequacy, the uniqueness nature of each dam, the complex interactions involved in the dam behaviour, the wrong perception of negligible risk of dam failure, the concern about the cost of risk assessment, the scepticism, the difficulties of understanding or applying the

Terezinha Espósito, DSc, Associate Professor, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. e-mail: esposito@etg.ufmg.br. Luiz Rafael Palmier, Associate Professor, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. e-mail: palmier@ehr.ufmg.br. Submitted on May 29, 2012; Final Acceptance on March 27, 2013; Discussion open until August 30, 2013. output resulting from any form of risk assessment, and, finally, the lack of knowledge of risk assessment techniques by the dam community. According to Hughes et al. (2000), the application of risk assessment should help to improve existent dam and reservoir safety, would be useful in identifying the potential consequence of failure and would allow risk classification of reservoirs and prioritization of the future interventions. It is essential that the dam risk assessment should include the primary mechanisms associated with dam incidents and failures, such as seepage/internal erosion, overtopping, instability/overstress, and settlement/deformation. In this context, taking into account the failure mechanisms and the actual maintenance of the embankment dams with different ages, the LCI method was developed for scoring the individual hazard, vulnerability and acquired knowledge of those structures, constituting one phase of a risk portfolio assessment.

The Location, Cause and Indicator (LCI) diagrams have been used for the risk assessment of reservoirs in the United Kingdom, specifically for risk analysis of dams with storage volumes greater than or equal to 25,000 m³. These three diagrams include the location of the dam component under study, the cause of failure of that component and signs or evidences (indicators) of failure effects in terms of the response of the system, and exclude the consequences evaluation. As an example, Pimenta *et al.* (2005) and Pimenta (2009) discussed the application of this method in Portugal, but without considering tailings dams, which is one of the aims of the current paper.

2.1. Principles and procedures of the LCI Method

Hughes *et al.* (2000) produced a series of Location, Cause, Indicator (LCI) Diagrams, based on known failure modes of different types of dams and on historical data and engineering judgment of existing dams in order to assist the FMECA (Failures Mode, Effects and Criticality Analysis) process in the risk assessment. Each LCI diagram analysis is performed on the basis of the dam characteristics, such as: type (concrete or embankment), height (less than 15 m, 15-30 m, greater than 30 m) and age (pre 1840, between 1840 and 1960, post 1960).

It should be noted that the FMECA complements the FMEA (Failure Modes and Effects Analysis) and is a systematic approach to analyse how a system can fail (failure mode), to determine the effects associated to each failure mode and to assess the likelihood of its occurrence and the severity of its effects to the system operation, through a criticality index, in other words, how critical that type of failure will be to the operation of the system.

Hughes *et al.* (2000) related that to characterize the causes and the indicators three score categories were used (scores from 1 to 5):

i Effects or consequences in the system (Cons.) to reflect the way as the failure of the element is directly related to complete (or partial) failure of the dam;

- ii Likelihood (Like.) corresponding to the likelihood of the failure of the element;
- iii Confidence degree (Conf.) of the analyst in its consequences and likelihood estimatives, to take into account the uncertainty in knowledge of the dam or of its components; this factor allows the consideration of an uncertainty measure.

During the process, the consequences in the downstream valley are evaluated through a Global Impact Index (GII) and the product of the score of each category (Cons., Like. and Conf.) gives a Criticality index for each set of causes or indicators of problems related to dam elements. The product of those indexes (Criticality index and Global Impact Index) gives the risk score.

Outputs include Location, Cause, Indicator (LCI) Diagram, indicating problematic areas and a list of criticality and risk scores associated with specific problem causes and indicators, allowing prioritisation of resources for single or multiple sites. The stages of this method are:

Stage 1: Impacts evaluation, that includes: information gathering, site visit, prediction of discharge and potential floodwater levels caused by dam failure, assessment and scoring of specific impacts from flooding and combination of scores.

Stage 2: Calculation of the Global Impact Index by the reduction of the different impact scores to a single value impact.

Stage 3: Development and application of LCI diagrams by considering the components of a dam and its contribution to its possible failure. Dam failure with different causes and with different indicators is considered. A criticality score is calculated for each cause/indicator element thus accreting for the overall dam safety.

In the first stage, information is collected along a stretch of 30 km in the downstream valley, including the main characteristics of land occupation, structures and infrastructure, and environmental resources. It is recommended to perform an inspection visit to the near valley along the first 5 km from the dam.

The identification of consequences involves the estimative of the discharge at the dam section, the rupture time and the levels reached by the flood wave in the valley sections previously defined. In order to achieve this, numerical models of dam-break type or simplified techniques are used for calculations of the hydrographs along the valley, as described by Hughes *et al.* (2000). Once the occupation of the valley and the downstream water levels, as affected by the flood wave, are estimated, stage 2 is initiated with the evaluation of the Global Impact Index (GII) by a weighted combination of the potential loss of human life (PLL) and economic losses (EL), along the near valley (first 5 km) and the remaining valley (until 30 km).

To calculate the PLL, the number of people at risk (PAR) is calculated taking into account the types of land occupations, *i.e.*, residential properties, non-residential

properties, transportation infrastructure and recreational sites potentially affected by the flood, and considering the estimates presented in Table 1. In formal terms, the PLL is calculated by the following equations:

PLL = 0.5 PAR (near valley) (1)

$$PLL = PAR^{0.6} (far valley)$$
(2)

The figure for the EL is obtained from the weighted sum of the scores associated with losses in the near and in the far away valleys. In this context, the following weights are used: 0.15 for residential properties; 0.15 for nonresidential properties; 0.10 for transportation infrastructure; 0.05 for recreational sites; 0.25 for industrial sites; 0.25 for utilities; and 0.05 for agriculture areas and natural habitats.

The GII is then determined by this equation:

$$GII = 100 EL_{5 km} + PLL_{5 km} + 30 EL_{5 km} + PLL_{5 km}$$
(3)

After calculating the GII, the next step (stage 3) is to classify the causes and subsequent effects through the application of the LCI diagrams, in order to estimate and classify the Ordination, Confidence, Criticality and Risk indexes.

The causes and the failure indicators are classified within a scale ranging from 1 to 5 by using the previously described three attributes: i) Consequences on the dam (Cons. 1 low, 5 high); ii) Likelihood (Like. 1 low, 5 high); and iii) degree of Confidence (Conf.) (5 low, 1 high).

According to Hughes *et al.* (2000), Caldeira (2005), Pimenta *et al.* (2005) and Pimenta (2009) after the classification of the attributes it is possible to calculate four indexes for each set Location/Cause/Indicator:

- Ordinance Index (Ind_{ord}), as determined by the product of attributed ratings to the Consequence and Likelihood.
- Confidence Index (Ind_{Conf}), taken equal to the Confidence score.
- Criticality Index (Ind_{Crit}), defined by the product of the ratings assigned to the Consequence, Likelihood and Confidence.
- Risk Index (Ind_{Risk}), as determined by the product of Criticality Index and the Global Impact Index.

2.2. Proposal of a version of the LCI method for tailings dams (LCI MOD-REJ)

An adapted version of the LCI method – the LCI MOD-REJ version – has been proposed in order to adjust a former structure developed specifically for dams to an even more explicit one to focus on the risk assessment of tailings dams by including a "Tailings impoundment" item in the general analysis. The main aim of this adapted version is to identify the structural elements that most contribute for the total collapse of tailing dams. So far the LCI MOD-REJ version was applied to just one Brazilian tailings dam with promising results – Esposito *et al.* (2011a) and Esposito (2011b). It is important to emphasize that the LCI MOD-

REJ version does not constitute a new system as specific and common adaptations were considered over the LCI method.

Pimenta et al. (2005) emphasize that when GII is below 175 (from the original LCI method) it is not recommended to apply the second step of the original method and therefore there is no need to estimate the Ordinance Index (Ind_{Ord}), the Criticality Index (Ind_{Crit}), the Confidence Index (Ind_{Conf}) and the Risk Index (Ind_{Risk}). In the LCI MOD-REJ version, based on a more conservative approach, the failure modes and the rates of risk must always be estimated. Tailings dams do not always have effective construction control, which also occurs in stages, following the generation and disposal of tailings. These tailings, in turn, have characteristics that change over time, making the quality control of the construction even more necessary. As in practice, since there is not yet a systematic control for these structures, especially in small and medium-sized mining companies, the suggestion is to always apply the proposed LCI MOD-REJ version following the three mentioned stages.

Another aspect is that LCI MOD-REJ diagrams considered the item "Location" with its subdivisions "Dam body, foundations and abutments" and "Spillway and its components", like the original LCI method, adding, as mentioned before, the "Tailings impoundment" subdivision.

3. Principles and Basic Procedures of the "Failure Modes And Effects Analysis" (FMEA) Method

In order to evaluate the LCI MOD-REJ version applicability and efficiency it is proposed a comparison of the results from its application with those from the use of the FMEA method, a much diffused one, to two Brazilian tailings dams. In this item only the basic procedures of the latter method will be shown as it is very well known and has been normally applied by Brazilian mines companies in the evaluation of the risk assessment on tailings dams. The FMEA method is a technique suited to define, identify and analyze potential failures from a given failure mode, its causes and consequences of effects, as well as the means of detection and prevention failure modes and mitigate their effects. To apply the FMEA method it is important to constitute a group of people to identify the product/process in question, in order words, to identify the system with its elements considering theirs functions, the types of failures that can occur, the effects and possible causes of this failure in each element (Hartford & Baecher, 2004).

The FMEA method can be conducted primarily in six steps (Caldeira, 2005 and Santos, 2006): (i) Structuring the system; (ii) Definition of features/requirements of each system component; (iii) Identification of potential failure modes associated with each function of each component; (iv) Identification of potential causes; (v) Description of the direct effects, and other components in the system; and (vi)

Impact 1 – Residential pre	operties		
Properties flooded	Number of properties flooded	Score	PAR
None	0	0	0
Minor	1 to 15	1	30
Appreciable	16 to 50	2	100
Significant	51 to 250	3	500
Major	> 250	4	2 x estimate
Impact 2 - Non-residentia	al properties		
Disruption	Number of people affected	Score	PAR
None	0	0	0
Minor	1 to 150	1	150
Appreciable	151 to 500	2	500
Significant	501 to 1000	3	1000
Major	> 1000	4	Estimate
Impact 3 – Transportation	n infrastructure		
Disruption	Infrastructures affected	Score	PAR
None	None	0	0
Minor	Minor roads only	1	25
Appreciable	Major regional	2	50
Significant	Major national	3	100
Major	Major international	4	Estimate
Impact 4 – Recreational s	ites		
Disruption	Number of people affected	Score	PAR
None	0	0	0
Minor	1 to 10	1	10
Appreciable	11 to 50	2	50
Significant	51 to 100	3	100
Major	> 100	4	Estimate
Impact 5 – Industrial sites	3		
Disruption	Type of industrial site	Score	
None	None	0	
Minor	Light industrial	1	
Appreciable	Public health industries	2	
Significant	Heavy industry	3	
Major	Nuclear petrochemical	4	
Impact 6 – Utilities	· · · · · · · · · · · · · · · · · · ·		
Disruption	Impact on utilities	Score	
None	None	0	
Minor	Local loss of distribution	1	
Appreciable	Local loss of distribution/supply	2	
Significant	Regional loss of distribution/supply	3	
Major	Significant impact on national services	4	
Impact 7 – Agriculture/ha	ibitats		
Disruption	Type of site	Score	
None	Uncultivated/grassland	0	
Minor	Pasture	1	
Appreciable	Widespread farming	2	
Significant	Intensive farming/vulnerable natural habitats/monuments	3	
Major	Loss of internationally recognise habitats/monuments	4	

Table 1 - Economic losses (PE) and people at risk estimated PAR (Hughes et al., 2000).

Identification of measures available to detect the causes or failure modes and to control or mitigate their effects. It is common to present the FMEA results by calculating the RPNi (Risk Priority Number) and elaborating the Risk Matrix.

4. Main Characteristics of the Tailings Dams A and B

The data used in the applications of the LCI (the LCI MOD-REJ version) and FMEA methods were based on actual information obtained from Tailings Dams A and B. Technical visits for visual inspection have been done and full dam-break studies were used to assess the floodplain in the downstream valley. The characteristics of both tailings dams are shown in Table 2. It should be noted that Tailings Dam A is currently receiving iron ore tailings differently from Tailings Dam B that is not receiving tailings and its reservoir is full of bauxite tailings.

5. Results and Discussions

5.1. Application of the LCI MOD-REJ diagrams

The purpose of applying the Location, Causes and Indicators of Failure diagrams is to identify and assess the failure modes in terms of likelihood and effects in the global system, based on exterior signs or deficiencies in the dam performance. This section illustrates the application of the LCI-MOD REJ diagrams to two tailings dam, named, in this paper, as Tailings Dam A and Tailings Dam B. Previously to the application of the LCI MOD-REJ diagrams, the GII was calculated. In the sequence, the causes and indicators of failures modes were classified according to the consequences (Cons.), likelihood (Like.) and confidence (Conf.) attributes (Figs. 1 and 2). Then, the following four indices were calculated: I_{ord} , I_{Crit} , I_{Conf} and I_{Risk} .

The GII (Global Impact Index) was calculated considering the potential loss of lives (PLL) and the economic losses (EL), as estimated for the near downstream (< 5 km) and the far away valleys (5 to 30 km), as shown in Tables 3 and 4. The GII values are showed in Table 5.

The causes and indicators were classified according to three attributes (Figs. 1 and 2): Consequence (Cons.); Likehood (Like.); Confidence (Conf.).

The Tables 6 and 7 present the justification of the values of attributes. In addition, the four indices, Ordinance Index (Ind_{Ord}), Criticality Index (Ind_{Crit}), Confidence Index (Ind_{Conf}), and Risk Index (Ind_{Risk}), were calculated as shown in Table 8.

5.2. Tailings dams A and B: The LCI MOD-REJ diagrams results

The Tailings Dam A and B Safety Reports were consulted and both dams were visited in order to elaborate their LCI MOD-REJ Diagrams. In the Tailings Dam A the Safety Reports was consistently emphasized great concerns about the freeboard, which explains the highest value of the Risk Index (Ind_{Risk}) for overtopping presented in Table 8 for

Characteristics/Dam	Tailings Dam A	Tailings Dam B
Section	Homogeneous	Homogeneous
Function storage reservoir	Iron ore tailings	Bauxite tailings
Classification of tailings stored (according FEAM – State Foundation of Environment)	III	III
Downstream human occupancy	Medium	Medium
Downstream environmental interest	High	High
Concentration of facilities in the downstream area	High	Medium
Analysis	Stability flow	Stability flow
Final dam height (m)	53	64
Crest	Width: 7.50 m Length: 267.97 m	Width: 5.00 m Length: 145.0 m
Upstream slope	1V:2H	1V:2H
Downstream slope	1V:2H	1V:2H
Surface drainage system	Concrete channels on the verges	Concrete channel on the verges and cut- water on the abutments
Internal drainage system	Vertical sand filter type chimney connected to a horizontal drainage and a foot drain	Vertical sand filter connected to a hori- zontal drainage. It has drains at the bottom of the valley and on the abutments
Spillway system	Channel side	Stop logs
Final volume of the reservoir (m ³)	6.72×10^{6}	3.87x10 ⁶

Table 2 - Characteristics of Tailings Dams A and B.

Espósito & Palmier

Figure 1 - Diagram LCI MOD-REJ Tailings Dam A - Attributes Consequence (Cons.), Likelihood (Like.) and Confidence (Conf.).

Figure 2 - Diagram LCI MOD-REJ Tailings Dam B - Attributes Consequence (Cons.), Likelihood (Like.) and Confidence (Conf.).

Impact	Dam A	Dam B	Value	Dam A	Dam B	Dam A	Dam B	Dam A	Dam B
	Impact score	Impact score		Final score	Final score	PAR	PAR	PLL	PLL
1	4	4	0.15	0.60	0.60	600	800	300	400
2	2	3	0.15	0.30	0.45	500	1000	250	500
3	3	4	0.10	0.30	0.40	100	200	50	100
4	4	4	0.05	0.20	0.20	200	450	100	225
5	1	4	0.25	0.25	1.00	-	-		
6	2	2	0.25	0.50	0.50	-	-		
7	4	4	0.05	0.20	0.20	-	-		
Total				2.65	3.35			700	1225

Table 3 - Near valley (< 5 km) – Tailings Dams A and B.

Table 4 - Far valley (5 to 30 km) – Tailings Dams A and B.

Impact	Dam A	Dam B	Value	Dam A	Dam B	Dam A	Dam B	Dam A	Dam B
	Impact score	Impact score		Final score	Final score	PAR	PAR	PLL	PLL
1	2	4	0.15	0.30	0.60	100	150000	16	1275
2	0	4	0.15	0	0.60	0	60000	0	736
3	4	4	0.10	0.40	0.40	10000	200	251	24
4	4	4	0.05	0.20	0.20	500	50000	42	658
5	4	4	0.25	1.00	1.00	-	-		
6	2	2	0.25	0.50	0.50	-	-		
7	4	4	0.05	0.20	0.20	-	-		
Total				2.60	3.50			511	2693

Table 5 - Global Impact Index – Tailings Dams A and B.

Tailings Dam A	GII = 1002.65 + 700 + 302.60 + 511 GII = 1554
Tailings Dam B	GII = 1003.35 + 1225 + 303.50 + 2693 GII = 4358

Dam A, although the probability of its occurrence is low. On the other hand the biggest concern for Tailings Dam B is due to internal erosion because it could generate a significant effect on this dam.

As no evidence of this phenomenon was detected, the probability of occurrence appears to be very small, especially considering the dam long operation time and the good practice used during its construction. However, as there are no monitoring devices, it has been assigned in this paper (Table 8) a high level for the Risk Index (Ind_{Risk}) for this indicator.

Another indicator associated with a high level for the Risk Index (Ind_{Risk}) for the Tailings Dam B was the overtopping. But it should be remembered that its probability of occurrence is low. It is interesting to note that the GII value is almost three times greater for Tailings Dam B than the same

for Tailings Dam A even though the former is no longer in operation. This reflects the importance given by the method to the overall consequences on the downstream valley.

The determination of a threshold value for the Risk Index (Ind_{Risk}) may allow an overall picture over a state of alert. Considering the results for Dams A and B, just as an example, the Location/Cause/Indicator for Ind_{Risk} values greater than 40,000 are presented in Table 9. This could be considered a preliminary estimate and it is recommended the application of the method to a great number of tailings dams to make it possible to establish a more reliable reference number for this index.

5.3. Application of the FMEA method

This section illustrates the application of the FMEA method to two tailings dams, named, in this paper, as Tail-

Location	Cause	Indicator	Justification
		Cracks on the crest and slopes	No cracking observed.
		Seepage/leakage	No resurgences or wetlands observed, however the inspection was carried out in a dry season.
	01	Internal erosion	No internal erosion detected. There are no monitor- ing devices.
	Settlement	Reduced freeboard	There is no evidence.
		Overtopping	There is no evidence; however there are no moni- toring devices.
		Deformations and cracks	There is no evidence; however there are no moni- toring devices.
		Seepage/leakage	There is evidence of vegetation, but no resurgences or wetlands. However, the inspection was carried out in a dry season.
Dam body, foundations and abutments	Instability	Reduced freeboard	There is no evidence of reduction of freeboard. The probability is small, but it is an important concern of the design related in the reports.
		Overtopping	There is no evidence; however there are no moni- toring devices.
		Sinkholes, abnormal growth of vegetation	There is evidence of vegetation, but no resurgences or wetlands. However, the inspection was carried out in a dry season.
	Internal erosion	Piping	Considering that the dam was built following all the technical requirements and piezometers were installed, the piping probability is very small.
		Slope instability/undermining the dam	The instability of slopes could create the dam glo- bal destabilization, so the effect would be signifi- cant. The probability is very small, since the dam was built following all the technical requirements. However, there are no monitoring devices.
	External erosion	Damage to the downstream foot	The deterioration of the downstream foot caused by erosion external could generate instability in the dam.
		Damage to the downstream face	The deterioration of the downstream face would not cause significant effects on the dam. The prob- ability of occurrence is very small.
		Damage to the upstream face	The deterioration of the downstream face would not cause significant effects on the dam. The prob- ability of occurrence is very small.
		Overtopping	There is no evidence; however there are no moni- toring devices.
		Erosion cracking	There is no evidence.
	Damages to struc-	Deformations damages	There is no evidence.
Spillway and its com-	tures	Reduced flow capacity over- topping	There is no evidence.
ponents		Reduced flow capacity	There is no evidence.
	Obstruction of flows	Deformations of structural ma- terials	There is no evidence.
		Damages of structures	There is no evidence.
	Inadequate flow ca-	Localised damage	There is no evidence.
	pacity	Overtopping	There is no evidence.

 Table 6 - LCI MOD-REJ Tailings Dam A - Justification of the values of Cons., Like. and Conf.

Location	Cause	Indicator	Justification
		Cracks on the crest and slopes	No cracking observed
		Seepage/leakage	No resurgences or wetlands observed, however the inspection was carried out in a dry season.
	Settlement	Internal erosion	No internal erosion detected. There are no monitor- ing devices.
		Reduced freeboard	There is no evidence.
		Overtopping	There is no evidence.
		Deformations and cracks	There is no evidence; however there are no moni- toring devices.
	Instability	Seepage/leakage	There is evidence of vegetation, but no resurgences or wetlands. However the inspection was carried out in a dry season.
		Reduced freeboard	There is no evidence of reduction of freeboard.
		Overtopping	There is no evidence; however there are no moni- toring devices.
Dam body, foundations and abutments		Sinkholes, abnormal growth of vegetation	There is evidence of vegetation, but no resurgences or wetlands. However the inspection was carried out in a dry season.
	Internal erosion	Piping	Considering that the dam was built following all the technical requirements and piezometers were installed, the piping probability is very small.
		Slope instability/undermining the dam	The instability of slopes could create the dam global destabilization, so the effect would be sig- nificant. The probability is very small, since the dam was built following all the technical require- ments. However, there are no monitoring devices.
		Damage to the downstream foot	There is no evidence.
		Damage to the downstream face	There is no evidence.
	External erosion	Damage to the upstream face	The deterioration of the downstream face would not cause significant effects on the dam. The prob- ability of occurrence is very small.
		Overtopping	There is no evidence; however there are no moni- toring devices.
		Erosion, cracking	There is no evidence.
	Damages to	Deformations, damages	There is no evidence.
	structures	Reduced flow capacity, overtop- ping	There is no evidence.
Spillway and its		Reduced flow capacity	There is no evidence.
components	Obstruction of flows	Deformations of structural materials	There is no evidence.
		Damages of structures	There is no evidence.
	Inadequate flow	Localised damage	There is no evidence.
	capacity	Overtopping	There is no evidence.
Tailings impoundment	Instability and in- adequate flow ca-	The capacity of tailings sedimen- tation and water clarification have been decreased	The effects caused by the non-sedimentation of the tailings and the non-clarification of the water are small. This dam is not in operation.
ranngs inpotnument	pacity	Rising water upstream and over- topping	There is no evidence; however there are no moni- toring devices. This dam is not in operation.

Table 7 - LCI MOD-REJ Tailings Dam B - Justification of the values of Cons., Like. and Conf.

Location	Cause	Indicator	Dam A Ind _{Ord}	Dam B Ind _{ord}	Dam A Ind _{Crit}	Dam B Ind _{Crit}	Dam A Ind _{Conf}	Dam B Ind _{Conf}	Dam A Ind _{Risk}	Dam B Ind _{Risk}
		Cracks on the crest and slopes	2	1	4	2	2	2	6216	8716
		Seepage/leakage	4	2	12	4	3	2	18648	17432
	Settlement	Internal erosion	4	4	8	8	2	2	12432	34864
		Reduced freeboard	6	3	18	6	3	2	27972	26148
		Overtopping	10	5	30	10	3	2	46620	43580
		Deformations and cracks	3	3	6	9	2	3	9324	39222
	Instability	Seepage/leakage	2	2	6	4	3	2	9324	17432
	Instability	Reduced freeboard	6	3	18	6	3	2	27972	26148
Dam body		Overtopping	10	5	30	10	3	2	46620	43580
foundations and abutments		Sinkholes abnormal growth of vegetation	3	3	6	6	2	2	9324	26148
	Internal erosion	Piping	5	5	10	10	2	2	15540	43580
		Slope instability/undermin- ing the dam	4	4	8	8	2	2	12432	34864
	External erosion	Damage to the downstream foot	8	2	16	2	2	1	24864	8716
		Damage to the downstream face	2	1	4	2	2	2	6216	8716
		Damage to the upstream face	2	3	6	9	3	3	9324	39222
		Overtopping	10	5	30	5	3	1	46620	21790
		Erosion, cracking	2	2	4	4	2	2	6216	17432
	Damages to	Deformation, damages	2	2	4	4	2	2	6216	17432
	structures	Reduced flow capac- ity, overtopping	5	5	10	10	2	2	15540	43580
Spillway and		Reduced flow capacity	4	4	4	4	1	1	6216	17432
its components	Obstruction of flows	Deformations of structural materials	3	3	3	6	1	2	4662	26148
		Damages of structures	2	2	2	4	1	2	3108	17432
	Inadequate flow	Localised damage	2	2	2	4	1	2	3108	17432
	capacity	Overtopping	5	5	5	10	1	2	7770	43580
Tailings im- poundment	Instability and inadequate flow	The capacity of tailings sedimentation and water clarification have been de- creased	2	2	4	2	2	1	6216	8716
poundinent	capacity	Rising water upstream and overtopping	5	5	15	5	3	1	23310	21790

Table 8 - LCI MOD-REJ Tailings Dams A and B - Ordinance Index (Ind_{Ord}), Criticality Index (Ind_{Crit}), Confidence Index (Ind_{Conf}), and Risk Index (Ind_{Risk}).

ings Dam A and Tailings Dam B. Firstly the Systems of the Tailings Dam A and B (Table 10) were defined. The dams are very similar, so the same system was used for both dams and only the item "1.1.6.4 Drain on the abutments" was in-

corporated in Tailings Dam B. For each element of the system the FMEA method incorporates its Function, Failure, Final Effect, Severity Index (Si), Cause, Occurrence Index (Oi), Control, Control Type, Detection Index (Di) and

Table 9	- Location/	Cause/Indicator	with associate	d Risk Index	(Ind _{Risk}) highe	er than 40,000.
---------	-------------	-----------------	----------------	--------------	------------------------------	-----------------

Location	Cause	Indicator
Dam body foundations and abutments	Settlement	Overtopping (Tailing Dam A and B)
	Instability	Overtopping (Tailing Dam A and B)
	Internal erosion	Piping (Tailing Dam B)
	External erosion	Overtopping (Tailing Dam A)

System of	System of the Tailings Dams A and B					
1.1	Dam body					
1.1.1	Crest					
1.1.2	Core					
1.1.3	Upstream slope					
1.1.3.1	Free board					
1.1.4	Downstream slope					
1.1.5	Surface drainage system					
1.1.5.1	Concrete channels					
1.16	Internal drainage system					
1.1.6.1	Bottom drain					
1.1.6.2	Vertical filter					
1.1.6.3	Foot drain					
1.1.6.4	Drain on the abutments (only in Tailings Dam B)					
1.2	Spillway system					
1.3	Abutments					
1.3.1	Abutment right					
1.3.2	Abutment left					
1.4	Foundation					
1.5	Tailings impoundment					

Table 10 - System of the Tailings Dams A and B

RPNi (Risk Priority Number). It is emphasized that the Severity Index (Si) shows how severe are the consequences (effects) of each failure mode, the Occurrence Index (Oi) shows how often occurs the cause of failure and the Detection Index (Di) shows what is the chance to be detected the cause of failure (Table 11). RPNi is equal to the product of Si, Oi and Di for each failure mode. The results are presented in Tables 12 and 13.

5.4. Tailings Dams A and B: the FMEA method results

The variation range for the RPNi numbers was from 4 to 225. The following criterion is proposed based on the RPNi values: 1 < RPNi < 50 Acceptable Risk; 50 < RPNi < 120 Tolerable Risk; and RPNi > 120 Intolerable Risk. The Table 14 shows the locations where the values of RPNi were greater than 120 (Intolerable Risk), to both dams.

Moreover the Risk Matrix may be plotted considering the Severity Index (Si) and the Occurrence Index (Oi). For the current cases both indexes would appear on the far left and higher positions, which can be interpreted as an alert situation. The critical items were "1.1.3.1 Free board" (Tailing Dam A) and "1.1.6.3 Foot drain" (Tailing Dam B).

Fable 11 - Severity	Index (Si),	Occurrence 1	Index (Oi)	and Detection	Index (Di).
----------------------------	-------------	--------------	------------	---------------	-------------

Severity inde	x (Si)	Осси	arrence index (Oi)	Dete	ection index (Di)
Si	Effect	Oi	Probability	Di	Probability
1	Very low	1	Improbable (0.1%)	1	Almost right
2 3	Low	2 3	Remote (0.1 to 1%)	2	Very high
4 5	Medium	4 5 6	Occasional (1 to 10%)	3	High
678	Severe	789	Probable (10 to 20%)	4	Moderately high
9	Very severe	10	Frequent (> 20%)	5	Moderate
10	Catastrophic			6	Low
				7	Very low
				8	Remote
				9	Very remote
				10	Almost impossible

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.1 Dam body									
Containment of	Inoufficient conceity to	Clobal instability of the		Inclosure of the majort		Adjustment of the project	Prevention	_	
tailings	contain tailings	dam	10	and/or construction	2	Visual Inspection and Instrumentation	Detection	3	60
1.1.1 Crest									
Allow access to dam	Not allow access to dam	Inability to carry out inspections	4	Inadequacy of the project and/or construction	2	Adjustment of the project Visual Inspection	Prevention Detection	- 1	8
1.1.2 Core						· · · · · · · · · ·			
				Alterability of the		Recompaction	Prevention		
				materials	2	Visual Inspection	Detection	6	108
						Recompaction	Prevention		
Reduce the				Dissolution of the materials	Dissolution of the materials 4 Visual Inspection and Instrumentation			6	216
hydraulic	Excessive seepage	Piping	9	High hydraulic load		Recompaction	Prevention	_	
conductivity				increase the saturation line	4	Visual Inspection and Instrumentation	Detection	2	72
						Recompaction	Prevention	_	
				Hydraulic fracturing	2	Visual Inspection and Instrumentation	Detection	4	72
1.1.3 Upstream slop	De								
						Adequacy of the geometry	Prevention	_	
				Deficient compaction of	4	Recompaction	Prevention	- 2	80
	Instability associated	Global instability of the	10			Instrumentation	Detection	_	
	with movements of the soil mass	dam	10			Adequacy of the geometry	Prevention	- 7	120
Confer -				Alterability of the materials	2	Recompaction	Prevention	- 0	120
						Visual Inspection	Detection		
		Overtopping		Alterability of the	2	Recompaction	Prevention	- 6	108
stability	Excessive deformation			materials	2	Visual Inspection	Detection	0	108
						Recompaction	Prevention	_	
			9	Collapse	2	Visual Inspection and Instrumentation	Detection	3	54
				Deficient compaction of		Recompaction	Prevention	_	
				the embankment	4	Visual Inspection and Instrumentation	Detection	2	72
1.1.3.1 Free board									
Not allow over						Adequacy of the geometry	Prevention	_	
topping of the	Allow overtopping of the	Overtopping	9	Inadequacy of the project	7	Adjustment of the project	Prevention	- 1	63
dam	uani			and/or construction		Visual Inspection and Instrumentation	Detection		
1.1.4 Downstream s	slope								
				Definition of		Adequacy of the geometry	Prevention	- 2	80
				the embankment	4	Recompaction	Prevention		
	Instability associated with movements of the	Global instability of the	10			Instrumentation	Detection	_	
	soil mass	dam	10	Altershility of the		Adequacy of the geometry	Prevention	- 6	120
				materials	2	Recompaction	Prevention	_	
Confer –						Visual Inspection	Detection		
mechanical	External areasian	Local instability of the	5	Deficient compaction of	4	Recompaction	Prevention		40
stability	External crosion	dam	5 bencient compaction of 4	Visual Inspection and Instrumentation	Detection	2	40		
				Alterability of the	2	Recompaction	Prevention	- 6	108
	Excessive deformation	Overtopping 9	ing 9 Deficient compaction of 4	materials 2	¥	Visual Inspection	Detection		108
	Excessive deformation			Nievel Lear attion	Prevention 2		72		
				the embankment		Instrumentation	Detection		. 2

Table 12 - FMEA Results: System of the Tailings Dam A.

Table 12 (cont.)

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.1.5 Surface draina	age system								
Colloct surface	Insufficient conscituto			Inadequacy section	1	Structural maintenance of channels	Prevention	4	20
water that flow	collect surface water that	Local instability of the	5			Visual Inspection	Detection		
through the embankment	flow through the embankment	dam	5			Unblocking of channels	Prevention		
				Obstruction of channels	2	Visual Inspection	Detection	- 2	20
						•	Prevention		
Collect surface	Insufficient capacity to	T 11 / 111/ C/I		Inadequacy section	1	Unblocking of channels	Detection	- 4	20
water outside the	collect surface water	dam	5				Prevention		
dam	outside the dam			Obstruction of channels	2	Visual Inspection	Detection	2	20
1 1 5 1 Concrete ch	annels								
				Te a de success de cécar	1	Structural maintenance of channels	Prevention	4	16
Collect the surface water that flow	Insufficient capacity to collect surface water that	Local instability of the	4	madequacy section	1	Visual Inspection	Detection	- 4	10
through the	flow through the	dam	4			Unblocking of channels	Prevention		
embankment	embankment			Obstruction of channels	2	Visual Inspection	Detection	- 2	16
						· · · · · · · · · · · · · · · · · · ·	Prevention		
Collect the surface	Insufficient capacity to collect surface water	Local instability of the	4	Inadequacy section	1	Unblocking of channels	Detection	- 4	16
dam	outside the dam	dam		Obstruction of channels	2	Visual Inspection	Prevention	2	16
1 1 6 Internal drain	age system			obstruction of chamers	2	visuu nispection		2	10
	-89					Adequacy of particle size	Provention		
Collect the seepage	Inadequate functioning of the internal drainage	Piping	9	Inadequacy of the project and/or construction	2	Visual Inspection and	Detection	6	108
1 1 6 1 Pottom dra	*					Instrumentation			
	11					A degree of porticle size			
				Inadequate particle size	2	Minut Inspection and	Prevention	- 5	90
						Instrumentation	Detection	5	
Collect the seep-	Insufficient drainage	Piping	9			Adequacy of particle size	Prevention		
age from dam	capacity		Î	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the	2	Adequacy of particle size	Prevention	- 6	109
				materials	2	Visual Inspection	Detection	0	108
						Adequacy of particle size	Prevention	_	
				Inadequate particle size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the seep-	Insufficient drainage					Adequacy of particle size	Prevention		
age from nature mass	capacity	Piping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
							Prevention		
				materials	2	Visual Inspection	Detection	- 6	108
						Adequacy of particle size	Prevention		
				Inadequate particle size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the seep-	Insufficient drainage		-			Adequacy of particle size	Prevention		
age from founda- tion	capacity	Piping 9	9 Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90	
				Alterability of the materials	2	Visual Inspection	Prevention	6	108

Table 12 (cont.)

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.1.6.2 Vertical filt	er								
				Inadequate of particle		Adequacy of particle size	Prevention	_	
				size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the seep-	Insufficient drainage	Dining	0			Adequacy of particle size	Prevention	_	
age from dam	capacity	riping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the	2	Adequacy of particle size	Prevention		100
				materials	2	Visual Inspection	Detection	0	108
				Inadequate of particle		Adequacy of particle size	Prevention	_	
				size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the seep-	Insufficient drainage	Dining	0			Adequacy of particle size	Prevention	_	
mass	capacity	Piping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the	2	Adequacy of particle size	Prevention	- 7	100
				materials	2	Visual Inspection	Detection	6	108
1.1.6.3 Foot drain									
				To a damage of a set of a		Adequacy of particle size	Prevention	_	
				size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the seep-	Insufficient drainage	D	0			Adequacy of particle size	Prevention	_	
age from dam	capacity	Piping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the		Adequacy of particle size	Prevention		100
				materials	2	Visual Inspection	Detection	6	108
						Adequacy of particle size	Prevention	_	
				size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the seep-	Insufficient drainage	Dining	0			Adequacy of particle size	Prevention	_	
mass	capacity	Piping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the		Adequacy of particle size	Prevention		100
				materials	2	Visual Inspection	Detection	6	108
1.2 Spillway system	n								
Combrat meter	Insufficient drainage	Orestania	0	Inadequate dimensioning	2	Correct dimensioning of the spillway	Prevention	- 2	54
Conduct water	capacity	Overtopping	9	of the spillway	3	Visual Inspection and Instrumentation	Detection	2	54
Not allow over-	Allow overtopping of the			Inadequate dimensioning		Correct dimensioning of the spillway	Prevention		
topping of the dam	dam	Overtopping	9	of the spillway	3	Visual Inspection and Instrumentation	Detection	- 2	54
1.3 Abutments									
						Sealing of cracks	Prevention	_	
Confer stability of	Instability associated with movements of the	Local instability of the	4	Reduction of strength	3	Adequacy of the geometry	Prevention	- 3	36
embankment	soil mass	dam				Visual Inspection and Instrumentation	Detection	-	
1.3.1 Abutment rig	ht								
						Sealing of cracks	Prevention		
Confer stability of	Instability associated with movements of the	Local instability of the	4	Reduction of strength	3	Adequacy of the geometry	Prevention	- 3	36
embankment	soil mass	dam	-		-	Visual Inspection and Instrumentation	Detection	-	

Table 12 (cont.)

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.3.2 Abutment left									
						Sealing of cracks	Prevention	_	
Confer stability of	Instability associated with movements of the	Local instability of the	4	Reduction of strength	3	Adequacy of the geometry	Prevention	_ 3	36
embankment	soil mass	dam	•	reduction of Strongan	5	Visual Inspection and Instrumentation	Detection	5	50
1.4 Foundation									
Provide support	Instability associated	Global instability of the		Foundation treatment		Reinforcement in the foundation treatment	Prevention		
for dam	with movements of the soil mass	dam	10	insufficient	2	Visual Inspection and Instrumentation	Detection	- 4	80
Confer global				Foundation treatment		Reinforcement in the foundation treatment	Prevention	_	
stability of embankment	Excessive seepage	Piping	9	insufficient	2	Visual Inspection and Instrumentation	Detection	- 5	90
1.5 Tailings impour	ndment								
Store water	Insufficient capacity for store water	Overtopping	9	Inadequacy of the project and/or construction	4	Visual Inspection and Instrumentation	Prevention	2	72
Retain sediments	Insufficient capacity for retain sediments	Reduction temporary of the storage capacity	5	Inadequacy of the project and/or construction	4	Visual Inspection and Instrumentation	Prevention	2	40
Water clarification	Insufficient capacity to clarify the water	Reduction temporary of the storage capacity	4	Inadequacy of the project and/or construction	3	Visual Inspection and Instrumentation	Prevention	2	20

Table 13 - FMEA Results: System of the Tailings Dam B.

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.1 Dam body									
						Adjustment of the project	Prevention	3	60
Containment of tailings	Insufficient capacity to contain tailings	Global instability of the dam	10	Inadequacy of the project and/or construction	2	Visual Inspection and Instrumentation	Detection		
1.1.1 Crest									
Allow access to		Inability to carry out		Inadequacy of the project		Adjustment of the project	Prevention		
dam	Not allow access to dam	inspections	4	and/or construction	2	Visual Inspection	Detection	- 1	8
1.1.2 Core									
				Alterability of the		Recompaction	Prevention		
				materials	2	Visual Inspection	Detection	- 6	108
						Recompaction	Prevention		
Reduce the				Dissolution of the materials	4	Visual Inspection and Instrumentation	Detection	6	216
hydraulic	Excessive seepage	Piping	9	High hydraulic load		Recompaction	Prevention		
conductivity				increase the saturation line	4	Visual Inspection and Instrumentation	Detection	2	72
						Recompaction	Prevention		
				Hydraulic fracturing	2	Visual Inspection and Instrumentation	Detection	4	72

Table 13 (cont.)

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.1.3 Upstream slop	be								
						Adequacy of the geometry	Prevention		20
				Deficient compaction of the embankment	4	Recompaction	Prevention	2	80
	Instability associated	Global instability of the				Instrumentation	Detection	_	
	with movements of the soil mass	dam	10			Adequacy of the geometry	Prevention	_	
				Alterability of the	2	Recompaction	Prevention	- 6	120
Confer mechani-				materials		Visual Inspection	Detection	_	
cal stability				Altershility of the		Recompaction	Prevention		
				materials	2	Visual Inspection	Detection	6	108
						Recompaction	Prevention		
			0	Collapse	2	Visual Inspection and		3	54
	Excessive deformation	Overtopping	9			Instrumentation	Detection		
				Deficient composition of		Recompaction	Prevention	_	
				the embankment	4	Visual Inspection and Instrumentation	Detection	2	72
1.1.3.1 Free board									
						Adequacy of the geometry	Prevention	_	
Not allow over- topping of the	Allow overtopping of the	Overtopping	9	Inadequacy of the project	4	Adjustment of the project	Prevention	- 1	36
dam	dam			and/or construction		Visual Inspection and Instrumentation	Detection	-	
1.1.4 Downstream s	lope								
						Adequacy of the geometry	Prevention		
				Deficient compaction of	4	Recompaction	Prevention	- 2	80
	Instability associated	Global instability of the		the embankment		Instrumentation	Detection		
	with movements of the	dam	10			Adequacy of the geometry	Prevention	-	
	son mass			Alterability of the	2	Recompaction	Prevention	- 6	120
				materials	-	Visual Inspection	Detection	-	
Confer						Recompaction	Prevention		
stability	External erosion	Local instability of the	5	Deficient compaction of	4	Visual Inspection and	Trevention	2	80
-		dam		the embankment		Instrumentation	Detection		
				Alterability of the	2	Recompaction	Prevention	_	108
				materials	2	Instrumentation	Detection	_ 0	108
	Excessive deformation	Overtopping	9	Deficient commention of		Recompaction	Prevention	_	
				the embankment	4	Visual Inspection and	Detection	2	72
						Instrumentation			
1.1.5 Surface draina	ige system					Ctorreturn 1 mail to a f			
Collect surface				Inadequacy section	1	channels	Prevention	_ 4	20
water that flow	Insufficient capacity to	Local instability of the	5			Visual Inspection	Detection		
embankment	conect surface water	dam			2	Unblocking of channels	Prevention		20
				Obstruction of channels	2	Visual Inspection	Detection	2	20
							Prevention		• •
Collect surface	Insufficient capacity to	Local instability of the	_	Inadequacy section	1	Unblocking of channels	Detection	4	20
water outside the	collect surface water	dam	5				Prevention		
				Obstruction of channels	2	Visual Inspection –	Detection	- 2	20
1.1.5.1 Concrete ch	annels								
Collect the surface				Inadequacy section	1	Structural maintenance of channels	Prevention	_ 4	16
water that flow	Insufficient capacity to	Local instability of the Λ	ity of the	Visual Inspection	Detection				
through the em- bankment	collect surface water	dam 4 _		Unblocking of channels	Prevention	- 2			
·				Obstruction of channels	2	Visual Inspection	Detection	2	16

Table 13 (cont.)

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
Calle at the surface							Prevention		
water outside the	Insufficient capacity to	Local instability of the	4	Inadequacy section	1	Unblocking of channels	Detection	- 4	16
dam	concer surface water	uan		Obstruction of channels	2	Visual Inspection	Prevention	2	16
1.1.6 Internal draina	ge system								
						Adequacy of particle size	Prevention		
Collect the seepage	Inadequate functioning of the internal drainage	Piping	9	Inadequacy of the project and/or construction	3	Visual Inspection and Instrumentation	Detection	6	162
1.1.6.1 Bottom drain	1								
						Adequacy of particle size	Prevention	_	
				Inadequate particle size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the	Insufficient drainage	D	0			Adequacy of particle size	Prevention	_	
seepage from dam	capacity	Piping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the	2	Adequacy of particle size	Prevention		109
				materials	2	Visual Inspection	Detection	6	108
						Adequacy of particle size	Prevention	_	
				Inadequate particle size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the	Insufficient drainage	D	0			Adequacy of particle size	Prevention	_	
seepage from nature mass	capacity	Piping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the		*** ** .*	Prevention		100
				materials	2	Visual Inspection	Detection	6	108
				Inadequate particle size	2	Adequacy of particle size	Prevention	_	
						Visual Inspection and Instrumentation	Detection	5	90
Collect the seepage from	Insufficient drainage	Pining	9	Insufficient thickness	2	Adequacy of particle size	Prevention	_	
foundation	capacity	Piping	9			Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the materials	2	Visual Inspection	Prevention	6	108
1.1.6.2 Vertical filte	r								
						Adequacy of particle size	Prevention	_	
				size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the	Insufficient drainage	T	0			Adequacy of particle size	Prevention	_	
seepage from dam	capacity	Piping	9	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
				Alterability of the		Adequacy of particle size	Prevention		100
				materials	2	Visual Inspection	Detection	6	108
						Adequacy of particle size	Prevention	_	
				size	2	Visual Inspection and Instrumentation	Detection	5	90
Collect the	Insufficient drainage		~			Adequacy of particle size	Prevention		
seepage from nature mass	capacity	e Piping 9	9 Insu	Insufficient thickness	2	Visual Inspection and Instrumentation	Detection	5	90
			Alterability of the Adequac	Adequacy of particle size	Prevention		100		
			Alterability of the naterials 2 Visu	Visual Inspection	Detection	6	108		

Table 13 (cont.)

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.1.6.3 Foot drain									
				Inadequate of particle		Adequacy of particle size	Prevention	_	
				size	5	Visual Inspection and Instrumentation	Detection	5	225
Collect the	Insufficient drainage	Dining	0			Adequacy of particle size	Prevention	_	
seepage from dam	capacity	riping	9	Insufficient thickness	5	Visual Inspection and Instrumentation	Detection	5	225
				Alterability of the		Adequacy of particle size	Prevention		
				materials	2	Visual Inspection	Detection	6	108
				To a damage of a set of a		Adequacy of particle size	Prevention	_	
				size	5	Visual Inspection and Instrumentation	Detection	5	225
Collect the	Insufficient drainage		0			Adequacy of particle size	Prevention	_	
seepage from nature mass	capacity	Piping	9	Insufficient thickness	5	Visual Inspection and Instrumentation	Detection	5	225
				Alterability of the		Adequacy of particle size	Prevention		
				materials	2	Visual Inspection	Detection	6	108
1.1.6.4 Drain on the	e abutments								
						Adequacy of particle size	Prevention	_	
				Inadequate of particle size	3	Visual Inspection and Instrumentation	Detection	4	108
Collect the	Insufficient drainage					Adequacy of particle size	Prevention		
seepage from dam	capacity	Piping	9	Insufficient thickness	3	Visual Inspection and Instrumentation	Detection	4	108
				Alterability of the		Adequacy of particle size	Prevention		
				materials	2	Visual Inspection	Detection	- 6	108
						Adequacy of particle size	Prevention		
				Inadequate of particle size	3	Visual Inspection and Instrumentation	Detection	4	108
Collect the	Insufficient drainage					Adequacy of particle size	Prevention	_	
seepage from nature mass	capacity	Piping	9	Insufficient thickness	3	Visual Inspection and Instrumentation	Detection	4	108
				Alterability of the		Adequacy of particle size	Prevention		
				materials	2	Visual Inspection	Detection	- 6	108
1.2 Spillway system	n								
	Insufficient drainage		0	Inadequate dimensioning		Correct dimensioning of the spillway	Prevention		27
Conduct water	capacity	Overtopping	9	of the spillway	I	Visual Inspection and Instrumentation	Detection	3	27
Not allow over-	Allow overtopping of the			Inadequate dimensioning		Correct dimensioning of the spillway	Prevention		
topping of the dam	dam	Overtopping	9	of the spillway	1	Visual Inspection and Instrumentation	Detection	- 3	27
1.3 Abutments									
						Sealing of cracks	Prevention		
Confer stability of	Instability associated with movements of the	Local instability of the	4	Reduction of strength	2	Adequacy of the geometry	Prevention		16
embankment	soil mass	dam		reduction of strength	2	Visual Inspection and Instrumentation	Detection	2	10
1.3.1 Abutment rig	ht								
						Sealing of cracks	Prevention	_	
Confer stability of	Instability associated with movements of the	Local instability of the	4	Reduction of strength	2	Adequacy of the geometry	Prevention	_ 2	16
embankment	soil mass	dam			-	Visual Inspection and Instrumentation	Detection	_	

Table 13 (cont.)

Function	Failure	Final effect	Si	Cause	Oi	Control	Control type	Di	RPNi
1.3.2 Abutment left									
						Sealing of cracks	Prevention	_	
Confer stability of	Instability associated with movements of the	Local instability of the	4	Reduction of strength	2	Adequacy of the geometry	Prevention	- 2	16
embankment	soil mass	dam		Reduction of strength		Visual Inspection and Instrumentation	Detection		10
1.4 Foundation									
Provide support	Instability associated	Global instability of the		Foundation treatment	2	Reinforcement in the foundation treatment	Prevention		
for dam	with movements of the soil mass	dam	10	insufficient		Visual Inspection and Instrumentation	Detection	4	80
Confer global			0	Foundation treatment		Reinforcement in the foundation treatment	Prevention		0.0
embankment	Excessive seepage	Piping	9	insufficient	2	Visual Inspection and Instrumentation	Detection	5	90
1.5 Tailings impour	ndment								
Store water	Insufficient capacity for store water	Overtopping	9	Inadequacy of the project and/or construction	1	Visual Inspection and Instrumentation	Prevention	1	9
Retain sediments	Insufficient capacity for retain sediments	Reduction temporary of the storage capacity	5	Inadequacy of the project and/or construction	1	Visual Inspection and Instrumentation	Prevention	1	5
Water clarification	Insufficient capacity to clarify the water	Reduction temporary of the storage capacity	4	Inadequacy of the project and/or construction	1	Visual Inspection and Instrumentation	Prevention	1	4

Table 14 - Intolerable Risk - RPNi > 120.

Location	Function	Failure	Final effect	Cause	Tailing Dam
1.1.2 Core	Reduce the hydraulic conductivity	Excessive seepage	Piping	Dissolution of the materials	A and B
1.1.6 Internal drainage system	Collect the seepage	Inadequate functioning of the internal drainage	Piping	Inadequacy of the project and/or construction	В
1.1.6.3 Foot drain	Collect the seepage from dam	Insufficient drainage capacity	Piping	- Inadequate of particle size - Insufficient thickness	В
	Collect the seepage from nature mass	Insufficient drainage capacity	Piping	Inadequate of particle sizeInsufficient thickness	В

6. Conclusions

Risk analysis methods have been recently applied to dams, also including tailings dams however there is still a lack of confident threshold risk values to subsidize general analysis of risk situations. A preliminary attempt was carried out in this paper for the LCI (LCI MOD-REJ version) and the FMEA methods (Ind_{Risk} greater than 40,000 and RPNi were greater than 120, respectively).

It can be concluded that those two methods allowed a better understanding of the behaviour of the analyzed dams proving that the use of risk analysis methods is a tool for the decision on making process of the risk management.

In a general view the results of both methods are similar in terms of risk situations though there are specific differences on the determination of failure modes for the two dams considered in this study case. The emphasis for the LCI MOD-REJ version was the indications of failures caused by overtopping while for the FMEA method only problems with piping were detected. It should be reinforced that by no means there is an immediate evidence of failures as both methods only specify to which aspects one must concentrate efforts in order to diminish the risk associated to potential failures of the structures.

These differences in the results are probably related to the way the methods were proposed and have been applied on risk analysis. The LCI one, the basis for the LCI MOD-REJ version, is more general and the calculation of the risk is carried out after an evaluation of the impacts on the downstream valley. On the other hand the evaluation process of the FMEA method is more detailed as the risk for each element of the system is considered in the analysis.

Based on the current results a preliminary recommendation is to apply, whenever possible, these two risk analysis methods to a single or a portfolio of tailings dams. In the first case the idea is to allow the elaboration of an ordination hierarchy and a list of procedures for security. In the latter case the combined application may define the dams that should be prioritized to an immediate maintenance and repairs.

It is important to emphasize the importance to extend the applications of these methods to several tailings dams for a real evaluation of their suitability and effectiveness. For the case of the LCI MOD-REJ version, this extension would be essential to its calibration and verification.

Acknowledgments

The authors thank FAPEMIG (Foundation of Support of Research of Minas Gerais) for financial support for this research and FEAM (State Foundation of Environmental) for logistic support.

References

- Caldeira, L. (2005) Análise de Risco em Geotecnia. Aplicação a Barragens de Aterro. Programa de Investigação para Otenção de Habilitação para Funções de Coordenação Científica (*in Portuguese*). LNEC, Lisbon, 238 pp.
- Espósito, T.J. (2000) Metodologia Probabilística e Observacional Aplicada a Barragens de Rejeito Construídas por Aterro Hidráulico. Tese de Doutorado, Publicação G.TD-004A/00, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, 359 pp.
- Espósito, T.; Caldeira, L. & Naghettini, M. (2011a) Application of Location, Cause and Failure Indicators dia-

grams (LCI) to Tailings Dams. Proc. 6th International Conference on Dam Engineering. Lisbon, Portugal.

- Espósito, T.; Caldeira, L. & Naghettini, M. (2011b) Aplicação da metodologia análise por diagramas de localização, causa e indicadores de falhas (LCI) em barragens de contenção de rejeitos. Proc. VII Congresso Brasileiro de Geotecnia Ambiental, REGEO' 2011, e VI Simpósio Brasileiro de Geossintéticos, Geossintéticos' 2011. Belo Horizonte, Brazil.
- Hartford, D.N.D. & Baecher, G.B. (2004) Risk and Uncertainly in Dam Safety. Thomas Telford Limited Ed., London, 391 pp.
- Hughes, A.; Hewlett, H.; Samuels, P.; Morris, M.; Sayers, P.; Moffat, I.; Harding, A. & Tedd, P. (2000) Risk Management for UK Reservoirs, Construction Industry Research and Information Association (CIRIA) C542, London, 213 pp.
- Pimenta, L. (2009) Abordagens de Riscos em Barragens de Aterro. Tese de Doutorado, Universidade Técnica de Lisboa, Lisbon, 534 pp.
- Pimenta, L.; Caldeira, L. & Silva Gomes, A. (2005) Análise de riscos da ensecadeira de Odelouca. Aplicação de uma metodologia simplificada com base em diagramas LCI. Seminário de Barragens Tecnologia, Segurança e Interação com a Sociedade, LNEC, Lisbon, Vol. T4.C7, pp. 609-627.
- Santos, R. (2006) Enquadramento das Análises de Riscos em Geotecnia. Dissertação de Mestrado em Geotecnia para Engenharia Civil, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, 257 pp.