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Abstract

Several analytical methodologies help estimate the shear strength of rock discontinuities
whose main limitations are the difficulty to obtain all necessary parameters to satisfacto-
rily represent the boundary conditions and influence of infill materials. The objective of
this study is to present a predictive model of peak shear strength for soft rock discontinu-
ities developed making use of an artificial neural network known as multilayer percep-
tron. The model’s input variables are: normal stiffness; initial normal stress acting on the
discontinuity; joint roughness coefficient (JRC); ratio #/a (fill thickness/asperity height);
uniaxial compressive strength and the basic friction angle of the intact rock; and finally
the internal friction angle of infill material. To do so, results from 115 direct shear tests,
with different soft rock discontinuities conditions were used. The herein proposed ANN
predictive model, with an architecture 7-20-1, have shown coefficient of correlation in
training and validation of 99.8 % and 99 %, respectively. The results from the model sat-
isfactorily fit the experimental data and were also able to represent the influence of the
input variables on the peak shear strength of soft rock discontinuities for different infill

and boundary conditions.

1. Introduction

The peak shear strength is the leading mechanical
property of interest when adopting limit equilibrium theo-
ries for design and analyze a project whose failure mecha-
nisms are governed by the discontinuities existing in a rock
mass. Consequently, it is of the utmost importance to deter-
mine it in order to develop rational designs in Rock Me-
chanics.

Several analytical formulations help estimate the
shear strength of rock discontinuities, and it is worth men-
tioning traditional methods such Patton (1966), Barton
(1973), Barton & Choubey (1977), Barton & Bandis (1982,
1990). In such methodologies, the shear strength of rock
discontinuities is determined indirectly considering the dis-
continuities roughness, uniaxial compressive strength of
the intact rock or wall strength, and the initial normal stress.
These simplified models having been validated by direct
shear tests performed under constant normal load condi-
tions (CNL), for certain load conditions. However, parame-
ters such as the presence of infill material and also normal

stiffness caused by the surrounding rock mass or rock bolts,
which significantly influence the shear strength of the dis-
continuities are not considered (Ladanyi & Archambault,
1977; Papaliangas et al., 1993; Haque, 1999; Haque &
Indraratna, 2000; Indraratna et al., 1999, 2005, 2010, 2012,
2013, 2014, 2015; Oliveira et al., 2009; Naghadehi, 2015;
Karakus et al., 2016; Mehrishal et al., 2016; Shrivastava &
Rao, 2017). On the other hand, the use of analytical models
for rationally considering the effect of the infill and the nor-
mal stiffness of the rock discontinuities is hampered by the
number of parameters required. These parameters obtained
by direct shear tests are not always able to represent the dis-
continuity’s boundary conditions satisfactorily and com-
prehensively (Ladanyi & Archambault, 1977; Papaliangas
et al., 1993; Indraratna et al., 1999; Oliveira et al., 2009).

Nowadays, one of the increasingly used modelling
techniques in geotechnical engineering to manage com-
plex, multivariate and nonlinear phenomena are the artifi-
cial neural networks (ANN), especially those known as
multilayer perceptrons (MLP). Many geotechnical applica-
tions have confirmed the efficiency of this tool in model-
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ling physical phenomena in geotechnics, such as, definition
of longitudinal pavement defects (Farias et al., 2003), pre-
diction of physical properties of asphalt materials for pav-
ing (Dantas Neto et al., 2004), development of models for
estimating settlements in deep pile foundations (Amancio
et al., 2014; Dantas Neto et al., 2014); predictive shear be-
havior in unfilled rock discontinuities (Dantas Neto et al.,
2017).

Artificial neural networks are parallel processors
massively distributed consisting of single processing units,
which have a natural propensity to store experimental
knowledge and make it available for use. From a mathemat-
ical viewpoint, an artificial neural network can be under-
stood as a set of nodes, or neurons, organized in successive
layers, analogous to the human brain. It has been proved
useful in developing predictive models of complex, multi-
variate and nonlinear phenomena, as in the case of the shear
strength of rock discontinuities. Among the benefits of
making the use of artificial neural networks is the fact that,
once their parameters are acquired, the predictive model
can be easily implemented in any calculation spreadsheets,
thereby facilitating their practical use in engineering.

This study proposes a predictive model for the peak
shear strength of soft rock discontinuities by using a multi-
layer perceptron, a practical method that can be used in en-
gineering daily basis without, in a first moment, the need of
large-scale laboratory results, or even the use of hard-to-get
parameters. The proposed predictive model presents as in-
put variables the following: normal stiffness (k,); the initial
normal stress (o, ) acting on the discontinuity; roughness of
the discontinuity represented by the value of the joint
roughness coefficient (JRC) proposed by Barton (1973);
influence of the infill represented by the #/a ratio (thickness
of the infill/asperity height); the characteristics of intact
rock represented by uniaxial compressive strength (c,) and
by the basic friction angle (¢,); and at last the shear strength
of the infill, if any, represented by its internal friction angle

().
2. Shear behavior of rock discontinuities

Peak shear strength of rock discontinuities is one of
the critical mechanical properties used in Rock Mechanics
design, mainly in situations that make use of limit equilib-
rium theories to analyze rock masses whose failure mecha-
nisms are governed by such geological structures. There are
several analytical methodologies to estimate the peak shear
strength of rock discontinuities, the majority of them vali-
dated using results from large-scale direct shear tests per-
formed under constant normal load conditions (CNL) and
applicable only for cases of unfilled discontinuities.

Patton (1966), based on a series of large-scale direct
shear tests under CNL conditions, proposed one of the first
analytical models in Rock Mechanics to estimate the peak
shear strength of unfilled rock discontinuities with regular
roughness profiles. This author states that the failure enve-
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lope of unfilled rock discontinuities presents a bilinear be-
havior represented by the curve B shown in Figure 1. It is
observed that: for low levels of normal stress, the peak
shear strength (t,) is given by sliding between the asperi-
ties, as a function of the applied normal stress (c,) and fric-
tion angle of the discontinuity, which is given by a
combination of the basic friction angle (¢,) of the rock and
the roughness conditions of the discontinuity, represented
by the angle of initial roughness inclination (i,), as shown in
Equation 1; while for high levels of normal load, the shear-
ing occurs producing damage on the asperities, creating a
cohesion intercept in the failure envelope given by Equa-
tion 2 after the sliding along a flat surface, with a friction
angle equal to the basic or residual friction angle (¢,).

Therefore, for low levels of normal stress, the shear
strength of the discontinuities is given by the necessary
friction to overcome the roughness caused by asperities and
the rock-rock shear characterized by the basic friction an-
gle. In contrast, for high load levels, the shear strength is the
result og the effort required to produce the failure or degra-
dation of the actual rough edges. Although it is quite a sim-
ple model, Patton’s (1966) concept was the basis for
numerous analytical methodologies, such as, the proposals
by Indraratna et al. (2005, 2008a, b, 2013, 2014), Oliveira
et al. (2009), Premadasa & Indraratna (2015), Shrivastava
& Rao (2017).

T, =0, tan(¢, +i,) (1)

T, =c;+0, tan¢, (2)

Barton & Choubey (1977) proposed a predictive ana-
Iytical model for the peak shear strength in unfilled discon-
tinuities considering simultaneously the sliding between
the asperities and their shearing represented in the bilinear
envelope proposed by Patton (1966). In this, the peak shear
strength can be estimated from the roughness of the discon-
tinuity represented by the joint roughness coefficient
(JRC), the joint compressive strength (JCS), obtained di-
rectly from the discontinuity wall using the Schmidt ham-

Normal Stress On

Figure 1. Shear strength envelope proposed by Patton (1966).
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mer, and the residual friction angle (¢,), as shown in Equa-
tion 3.

T, =0, tan{JRC 10g[JCS)+ d, } 3)
GYI
The residual friction angle presented in Equation 3 is
estimated as a function of the basic friction angle of the
rock (¢,) and of the results of the Schmidt hammer tests as
demonstrated in Equation 4.

9, =(9, —20°)+20£ )

where R is the result from the sclerometer test in dry
unweathered discontinuities, 7 is the result from the sclero-
meter test in wet weathered discontinuities.

Singh & Basu (2018) used results from 196 direct
shear tests under CNL conditions to evaluate different ana-
Iytical models for predicting the peak shear strength in un-
filled rock discontinuities. This assessment was made using
parameters such as the mean error and the root mean square
error between the test results and the predictions from some
existing models, obtaining the exposed in Table 1. Accord-
ing to these authors, although the models of Barton (1973)
and Barton & Choubey (1977) are some of the most com-
monly used in Rock Mechanics, the models by Zhang et al.,
2016, Yang et al. (2016) and Lee et al. (2014) provided re-
sults that are closer to the tests data than those obtained by
applying the Barton (1973) and Barton & Choubey (1977)
models.

The models by Xia et al. (2014), Zhang et al. (2016),
and Yang et al. (2016) use the roughness characteristics of
the discontinuities obtained by scanning the rock surface
for the peak shear strength estimation, thus considering
their three-dimensional morphology. However, having
been considered an efficient representation when compared

with other models by Singh & Basu (2018), obtaining the
necessary parameters is somewhat difficult, considering
the methodologies of classification and collecting data ori-
ginally used in Rock Mechanics.

Studies by Horn & Deere (1962), Goodman (1969),
Zeigler et al. (1972), Richard (1975), Ladanyi & Archam-
bault (1977), Papaliangas et al. (1993), Haque (1999), Ha-
que & Indraratna (2000), Indraratna et al. (1999, 2005,
2008a, b, 2010, 2012, 2013, 2014, 2015), Naghadehi
(2015), Karakus et al. (2016), Mehrishal et al. (2016) and
Shrivastava & Rao (2017), based on large-scale direct shear
test results, demonstrate that other parameters not consid-
ered in the classical models presented on Equations 1 and 3
are also important when determining the shear strength of
the rock discontinuities. Among which mention should be
made of the following: the condition of normal stiffness of
the discontinuity due the boundary conditions of the sur-
rounding rock mass; type and strength characteristics of the
infill material in the rock discontinuities; and the ratio be-
tween the infill thickness (f) and average height of the aspe-
rities (a), referred to as the t/a ratio.

Papaliangas et al. (1990) studied the shear strength of
discontinuities filled with fine particles by carrying out di-
rect shear tests on artificially shaped sandstone rock dis-
continuities with different JRC values (Figure 2). The
authors’ results showed a drop in the peak shear strength of

JOINT A JRC=10
JOINT B JRC=8

Figure 2. Discontinuity profiles tested by Papaliangas et al.
(1990).

Table 1. Comparison between analytical methods for predicting the peak shear strength in rock discontinuities (Singh & Basu, 2018).

Shear strength criteria Granite Quartzite Sandstone
Avg. error (%) RMSE Avg. error (%) RMSE Avg. error (%) RMSE
Barton (1973) 12.17 0.102 26.68 0.198 20.57 0.185
Aydan et al. (1996) 21.06 0.188 20.12 0.175 31.93 0.304
Tatone & Grasselli (2009) 67.22 0.567 39.23 0.352 55.57 0.41
Gahzvinian et al. (2012) 55.07 0.448 30.82 0.262 44.19 0.307
Lee et al. (2014) 16.8 0.118 15.7 0.132 13.82 0.129
Tang et al. (2014) 27.45 0.224 13.87 0.102 12.16 0.096
Xia et al. (2014) 17.8 0.152 15.05 0.109 10.09 0.087
Jang & Jang (2015) 102.43 0.774 81.72 0.649 192.68 1.444
Kumar & Verma (2016) 22.05 0.241 19.54 0.136 18.57 0.181
Yang et al. (2016) 10.48 0.092 18.37 0.132 11.63 0.11
Zhang et al. (2016) 11.07 0.085 21.85 0.155 14.14 0.12
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the rock discontinuities with the increase of the #/a ratio up
to a critical value between 1.25 and 1.5. From this critical
value of #/a, the shear strength of the rock discontinuity
tends to remain constant, its strength becomes controlled
only by the infill material.

Based on large-scale direct shear test results per-
formed on infilled rock discontinuities under CNL, Papa-
liangas et al. (1993) proposed a model to estimate the
friction coefficient (p) of the discontinuity that considers
the effect of the infill as seen in Equation 5 and Figure 3. In
this equation, ¢ and m are experimental constants, where ¢
represents the critical #/a ratio and m the rate of shear
strength reduction with the increase of infilling thickness.
The authors recommend the following values: ¢ = 1 for
clayey infills and ¢ = 1.5 for granular materials.

p’ = Mmin + (l‘l'mux _Mmin )[I 7%’(%)1” (5)

Indraratna et al. (1999), in their experimental study,
found that the influence of infill on the peak shear strength
of saw-tooth soft rock discontinuities tested under CNL
(constant normal load) and CNS (constant normal stiffness)
conditions were similar. Those authors noted that there was
a sharp drop in dilation during the shearing when the infill
began to influence the failure mechanism of the rock dis-
continuities and proposed an hyperbolic equation to deter-
mine the drop in shear strength of the infilled discontinu-
ities with the rise of the #/a ratio as shown in Equation 6.

xz
T p. infilled =1 p, unfilled - Gno (X,(ﬁ; + [3 (6)

where t is the peak shear strength of infilled disconti-
nuity, t, ..., i the peak shear strength of unfilled disconti-
nuity, o, is the initial normal stress acting on the rock
discontinuity, o and p are empirical parameters.

Haque (1999) also proposed that the peak shear
strength could be expressed by a Fourier series, as shown in
Equation 7, with parameters regarding also the boundary
conditions acting on the discontinuity, expressed by the ini-
tial normal stress (c,,), normal stiffness (k,), #/a ratio, basic

pinfilled

no-

H max

Hmin

1 L ) t/a
I 1

Figure 3. Variation of friction coefficient p with the #/a ratio
(Papaliangas et al., 1993).
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friction angle (¢,), and initial asperity angle (7,). In Equation
7, h,and i, are the horizontal displacement and dilation an-
gle corresponding to the peak shear stress. The a,, a, and T
are the Fourier series parameters obtained by interpolating
the experimental data from large-scale direct shear tests.

T =|lo +k" %o +a, cos 27thp X
p, infilled no 2 1 T
@)

tan ¢, —tani,

x
a

() +p

no

1—tan ¢, —tani,,

Oliveira et al. (2009) developed the model shown in
Equation 8 to predict the peak shear strength from direct
shear tests under CNS conditions in saw-tooth rock discon-
tinuities. In such a proposal, the authors considered the co-
hesion (c,,) and friction angle (¢,,) of infill material, and the
(t/a),, ratio in the estimation of peak shear strength, the dila-
tation angle at peak shear stress for clean joint (i_,,,) and
when compared to that one proposed by Haque (1999) and
shown in Equation 7.

tan ¢, +tani;

’
T = +c
, infilled 1/ .
pinfile 7 "|1-tan ¢, —tani

tp (clean)

p

c) 2
(1_«) ] M e
aler 14 oaler

a

)

Shrivastava & Rao (2017) proposed a model to obtain
the peak shear strength of infilled rock discontinuities after
direct shear testing on saw-tooth rock discontinuities under
CNL and CNS conditions, for different values of the #/a ra-
tio, whose infill material was formed by fine sand and mica
powder, and different roughness conditions. The model
proposed by these authors uses the basic friction angle (¢,)
and the uniaxial compressive strength (c,) of the intact
rock, the initial normal stress (c, ) acting on the discontinu-
ity, and the roughness of the discontinuity represented by
the angle of its asperities (i), as shown in Equation 9. Ac-
cording to the authors, the parameter a can be close to the
unit value (@ = 1), and the value of b ranges from zero to
0.36, while constants x and y are obtained according to the
conditions presented in Table 2.

ac, +b +y}} ©)
c,

Studies seeking to include the effect of infill material
conditions (overconsolidation, unsaturation, water flow) in
its shear strength were also implemented (Indraratna et al.,
2008a, b, 2013, 2014; Premadasa & Indraratna, 2015).
Such studies have shown that the evaluation of the influ-
ence of the various parameters on the peak shear strength of

t, =(ac, +b) tan{d)b +xln{
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Table 2. Coefficients x and y for different #/a values for be used in
Equation 9.

i t/a X y R
30°-30° 0 -0.3 -0.356 0.95
1 -0.26 -0.494 0.96
1.4 -0.33 -0.821 0.99
2 -0.13 -0.906 0.75
15°-15° 1 -0.51 -1.14 0.88
0°-0° t=5mm -0.07 0.73 0.99

the discontinuities has contributed to propose analytical
models that satisfactorily represent this property for the
widest variety of rock discontinuities and boundary condi-
tions. However, the use of such analytical methodologies is
still somewhat laborious, bearing in mind the need in spe-
cific cases to perform detailed laboratory tests to obtain the
parameters required.

In order simplify the predictive process of the shear-
ing behavior of discontinuities, eliminating many existing
problems in the use of the current analytical proposals, it is
worth mentioning some predictive models developed with
artificial neural networks (ANN), fuzzy logic and neuro-
fuzzy techniques, for instance the proposals by Dantas Neto
et al. (2017), Matos (2018), and Matos et al. (2019a, b).
Such models do not intend to replace other models or tests,
but they present themselves as tools that can be used for es-
timating dilation and shear stress data of rock discontinu-
ities enabling fast applications compatible with the day-to-
day demands in engineering. Despite the good results pre-
sented by these models, they did not consider the infill ma-
terials which was the motivation for the present study.

3. Artificial neural networks

3.1 Basic concepts

Nowadays Artificial Neural Networks (ANN) are the
computer models most commonly used in different areas of

knowledge (Schmidhuber, 2015). ANN are based on the
functioning of the human brain and its capacity to perceive
and learn complex, nonlinear and multivariate phenomena
(Dantas Neto et al., 2017; Chen et al., 2018; Schmidhuber,
2015).

Among the different kinds of existing artificial neural
networks with well-proven applications in engineering, it is
worth mentioning the multilayer perceptron (Dantas Neto
etal., 2014, 2017; Schmidhuber, 2015; Haykin, 2008). The
multilayer perceptron (MLP), illustrated in Figure 4, is a
neural feedforward network comprising three types of lay-
ers: the input layer, consisting of nodes designed to receive
stimulus from outside the system, that is, the values of the
variables governing the modelled phenomenon; one or
more hidden layers of neurons, responsible for increasing
the capacity of the artificial neural network in extracting the
most complex behavior or the environment in which it in-
tends to establish a predictive model; and the output layer,
comprising neurons whose signals are responses to the
stimulus presented to the neural network.

Figure 5 shows the structure of each constituent artifi-
cial neuron of a multilayer perceptron, whose response in
mathematical terms is obtained by successively applying
Equation 10 to 12 (Haykin, 2008).

w, =Y wy,x, =w’ {x) (10)
v, =u, +b, :{W}T{x}+bk (11
v, =f0) = f(w} x}+b,) (12)

where x, are input variables, w,, are synaptic weights, v, is
the induced local field, i, is the output of linear combiner, b,
is the bias, v, is the induced local function, yk is the neuron
output result, d, are the expected result, ek is the output neu-
ron error.

One of the most relevant properties of a neural net-
work is its skill to learn from the environment in which it is
inserted and to improve its performance through an ongo-
ing training process. Training an artificial neural network
consists of altering all synaptic weights (w,) and existing

Input Data

First hidden
layer

Input
Layer

Figure 4. Diagram of a multilayer perceptron (Haykin, 2008).
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Figure 5. Diagram of an artificial neuron.

bias (b,), from the known experience of the phenomenon
studied, commonly available in a set of known in-out ex-
perimental data.

The performance of a neural network can be assessed
by comparing the values obtaining for each neuron existing
in the output layer with its corresponding one available in
the training set, based on an average cost function defined
as:

Emed (n) =

ZZ

i=1 kec

—ZZ[d ®-y, O

tlkec

13)

where c is the set of all neurons from the output layer in the
example / of the training set, d (i) is the desired (known)
output for the neuron £, in example i, y (i) is the response
calculated by neuron k, for the stimuli known in example i,
e (i) is the error signal of neuron k, in example i, n is the dis-
crete period (period), corresponding to each alteration in
the set of synaptic weights in the training set.

The training process of a neural network consists of
successive adjustments of its synaptic weight to minimize
the value of the average cost function throughout the avail-
able training set. For one neuron belonging to the output
layer y (n), the vector of the synaptic weights linking to the
neurons of the previous layer {y(i)} is adjusted by interac-
tively minimizing the average cost function passing
throughout the training set. This rule for altering the synap-
tic weights, known as Delta Rule, is described by the fol-
lowing expression:

ij (n +1) =ij (l’l) _nVEmed (n)
. (14)
=w,;(n) +Z z 8, (Dy, ()

where w (n+1) is the vector of synaptic weights between
neurons k and j in the iteration (period) n+1, w, (n) is the
vector of synaptic weights between neurons k and j in the it-
eration n, VE, ,(n)is the gradient of the average cost func-
tion, M is the learning rate, y (i) is the vector of neuron input

me
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y,(n) in the nth example available in the training set, 5,(i) is
the local gradient of neuron y,(n), defined as:

8, )=, ()f' (v, (D)

where e (i) is the error signal of neuron y (i) in the nth exam-
ple of the training set, v (i) is the induced local field of neu-
ron y,(i) in the nth example of the training set.

For a neuron in the hidden layer, the direct calculation
of the local gradient, according to Equation 15 is not possi-
ble, since the signal produced therein cannot be compared
to a known value and, therefore, no error signal can be gen-
erated. In this case, the local gradient of the neuron in the
hidden layer is determined by back-propagation of the error
signal produced in the neurons in the output layer y (7). This
procedure is known as error backpropagation algorithm and
was developed by Rumelhart et al. (1986), based on which
the local gradient of a neuron belonging to a hidden layer
immediately before the output layer is defined as:

15)

8, (z)———f(v @), D8, (w,;(n)

i keC

(16)

Bearing in mind the heavy dependence of the back-
propagation algorithm convergence on the value of the
learning rate adopted, Rumelhart et al. (1986) also pro-
posed to introduce a parameter o, known as constant of mo-
mentum, in Equation 14 in order to improve the stability of
the algorithm convergence resulting in the expression pre-
sented by Equation 17.

w0 D) =w )+ T35,y () +a(Aw, (1) (17)

i=1

3.2 Applications of the artificial neural networks in
Rock Mechanics

In Rock Mechanics many studies were performed us-
ing neural networks as a powerful and valuable tool for de-
veloping predictive models. The majority of them contem-
plate the prediction of intact rock properties such as the
uniaxial compressive strength (Grima et al., 2000; Mosh-
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refii et al., 2018), Young’s modulus (Sonmez et al., 2016;
Yilmaz & Yusek, 2008; Dehghan et al., 2010), and even
tensile strength (Singh et al., 2001). Concerning the devel-
opment of predictive models for rock discontinuities using
MLP, it is worth mentioning the studies by Dantas Neto et
al. (2017) and Leite et al. (2019).

Dantas Neto et al. (2017) proposed a model of six in-
put variables (normal stiffness, initial normal stress, JRC,
uniaxial compressive strength of intact rock, basic friction
angle and shear displacement), a hidden layer with 20 neu-
rons, with the shear stress and dilation as the network out-
puts. This model was based on 44 direct shear tests obtained
from the studies by Benmokrane & Ballivy (1989), Skinas
etal. (1990), Papaliangas et al. (1993), Haque & Indraratna
(2000), and Indraratna et al. (2010) and provided coeffi-
cients of correlation of 0.99 in both the training and testing
phases. Although the results from the model satisfactorily
fit the test results used in its development and can also satis-
factorily express the influence of the input variables in the
shear strength and dilation, this model is also to unfilled
discontinuities.

Dantas Neto et al. (2018) provided an ANN predic-
tive model of the shear strength of the unfilled discontinu-
ities only for soft rock, considering as input variables nor-
mal stiffness (k,), initial normal stress (c,,), height (a) and
initial inclination (i,) of joint asperities and shear displace-
ment (k) imposed on the discontinuity. The correlation co-
efficients were also high, approximately 0.99, both in the
training and testing phases. This model’s main limitations
lie in the fact that the impact of the infill on the shear
strength is not considered.

Leite et al. (2019) proposed a predictive model simi-
lar to the model suggested by Dantas Neto et al. (2017) but
including the influence of the infill on the shear behavior of

Table 3. Joint parameters used in the ANN development.

the rock discontinuities. This neuronal model has an A:8-
20-10-5-2 architecture, with eight (8) input neurons and
three (3) hidden neuron layers, providing as output the
shear stress and dilation of the rock discontinuity as a func-
tion of shear displacement imposed on the discontinuity.
Correlation coefficients of 0.99 were obtained in both the
training and validation phases of the model, which showed
proper adjustments to the test data used in developing the
model. This work was still preliminary with no further ap-
plicable information provided about the ANN model used
and required a horizontal displacement data for its applica-
tion.

4. Development of model

4.1 Data collection and definition of input variables

The present predictive model was developed based on
the results of 115 direct shear tests performed by Haque &
Indraratna (2000), Haque (1999), Indraratna et al. (2010),
Oliveira et al. (2009), and Shrivastava & Rao (2017) on soft
rock discontinuities with different characteristics and boun-
dary conditions. The parameters used are listed below in
Table 3. From the tests, 58 % were performed on infilled
discontinuities and 67 % carried out under CNS conditions.

Based on the literature review, it is undeniable that
the peak shear strength of the rock discontinuities is gov-
erned by its boundary conditions, roughness characteris-
tics, intact rock properties and by the condition and shear
strength characteristics of infill materials. Consequently,
the following parameters were adopted as input variables
for the predictive ANN model for the peak shear strength of
soft rock discontinuities:

* x,=normal stiffness of the discontinuity (k,), in kPa/mm;

* x,=t/aratio;

Reference Data Joint type Filling  Limit Normal #a s, JRC o b,  Ou T,
material stiffness (MPa) (MPa) (°) (°) (MPa)
(kPa/mm)

Indraratna & Haque 62 Saw-toothed Bentonite ~ Min 0 0 0.16 2 12 32 0 0.14
(2000) and Haque Max 453 1.8 269 13 20 375 355 334
(1999)
Papaliangas et al. 11 Natural Granular ~ Min 0 0 0.05 12 3.5 30 0 0.02
(1993) material

Max 0 1.1 0.1 12 35 30 30 0.1
Oliveira (2009) and 5 Saw-toothed  Clayey Min 453 0 0.8 8 215 355 O 0.38
Indraratna et al. (2010) sand

Max 453 2 0.8 8 215 355 275 1.63
Shrivastava & Rao 37 Saw-toothed Fine sand  Min 0 0 0.05 7 1175 30 0 0.08
(2017) and mica

dust

Max 90.7 2 204 15 1175 30 288 2.6
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* x,=initial normal stress (o, ) acting on the discontinuity,
in MPa;

* x,=JRC;

* x, = uniaxial compressive strength of intact rock (), in
MPa;

* x, = basic friction angle (¢,), in degrees;

* x, = internal friction angle of the discontinuity infill ma-
terial (¢,,), in degrees.

Although in the different studies that used experimen-
tal data to develop the model, the uniaxial compressive
strength had been obtained from uniaxial compressive
tests, in this study it is recommended that the G, value to be
used for representing the uniaxial compressive strength of
the intact rock be obtained from the Schmidt hammer. As a
result, it shall take into account the change in intact rock
properties, due to weathering action, in the determination
of the rock discontinuities peak shear strength.

The expression in Equation 18 broadly represents the
predictive model of the peak shear strength of soft rock dis-
continuities depending on their governing variables. The
relationship between input and output variables of the neu-
ronal model are defined by the neural network architecture,
activation functions of its neurons and the values obtained
for the synaptic weights and bias.

Tp :/{k,ls;’Gno’JRC7GC’¢b’¢ﬁNj (18)

4.2 Training, testing and validation of the neuronal
model

In order to set up the predictive neuronal model of the
peak shear strength of soft rock discontinuities, eight (8)
different architectures (7-30-1; 7-20-1; 7-15-1; 7-10-1; 7-
30-15-1; 7-20-10-1; 7-30-15-5-1; 7-20-10-5-1) were used
and submitted to the training, testing and validation phases

Training each ANN model represented by specific
architecture consists of altering the synaptic weights using
the backpropagation algorithm of Rumelhart et al. (1986)
and the experimental data available in the training set
formed by 80 %, randomly selected, of the 115 results of
the aforementioned direct shear tests. During the training
phase, the performance of each neuronal model studied
was assessed from the variation in the number of iterations
vs. the coefficient of correlation between the value of the
output supplied by the neuronal model and the existing
target-value in the training set for each used input-output
example. In this study, the alterations in the synaptic

weights occurred up to a maximum of 1,000,000 iterations.

Test phase used the remaining 20 % of input-output
examples in the available experimental data set that were
left unused in the neuronal model training phase to assess
the performance of the models when predicting data to
which they were not submitted during the training phase. In
addition to assessing the models’ performance, monitoring
the correlation values with the number of iterations in the
test phase, also helps identify the optimal stopping point
aiming to prevent any overfitting process that tends to im-
pair the generalization capacity of the neuronal models
(Haykin, 2008).

Validation phase consisted of assessing the neuronal
models for the different architectures previously described
by comparing the models’ results with the test results. This
enabled the identification of which models have enough ca-
pacity to properly interpolate the test results and satisfacto-
rily express the influence of the different input variables in
the peak shear strength of soft rock discontinuities.

The feedforward multilayer perceptron with back-
propagation software QNET2000 was used in the training,
testing and validation phases of the studied neuronal mod-
els. The sigmoid function given in Equation 19 was adopted
to activate all neurons in the neuronal models studied be-
cause it is one of the most commonly used activation func-
tions with satisfactory results in developing multilayer per-
ceptron neuronal models (Runxuan, 2006; Dantas Neto et
al., 2017, and Moshrefii et al., 2018).

1
l+e ™™

f(x) = (19)

To calculate the error signals between the values
available in the training set and those calculated by the
studied neuronal models using the sigmoid function for
activating the neurons in the output layer, it was necessary
to normalize the input and output data available in the
training and testing sets. This study involves normalizing
these data in the 0.15 to 0.85 interval according to the
Equation 20. Table 4 provides the variation intervals for
the input and output variable values existing in the experi-
mental set used for training and testing the studied
neuronal models.

-01 -X,.
X nor 015 — X = Xinin (20)
085-015 «x,,, —=x

max min

Table 4. Maximum and minimum values used for ANN training and validation.

k, (kN/mm) i/a . (MPa) JRC . (MPa) b, (®) 0p ©) t, (kPa)

0 0 0.05 2 3.5 30 21 20.8

453 2 2.69 15 21.5 37.5 35.5 3343
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where x _is the normalized variable value, x_. is the mini-

nor min

mum variable value in the training set, x__is the maximum

max

variable value in the training set.

In order to optimize the training process and, when al-
tering the synaptic weights, avoid affecting any minimal
points of the cost function, a variation range was used for
the learning rate (n) of 0.001 and 0.1, and adopted the 0.8
value for the constant of momentum (o).

The criteria to define the best performing neuronal
model to predict the peak shear strength of the soft rock dis-
continuities took into account the following aspects in or-
der of priority: highest correlation value between the values
available in the experimental set adopted and those calcu-
lated by the neural network in the test phase; the model’s
capacity to interpolate test data; and the model’s capacity to
represent the influence of input variables on the peak shear
strength of soft rock discontinuities; and, in case of similar-
ity for the above criteria, the model formed by the architec-
ture with the smallest number of synaptic weights will be
adopted.
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Figure 6. ANN model architecture 7-20-1.
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5. Results and discussions

5.1 Training, testing and defining the model

Within the eight architectures studied in the search for
a predictive neuronal model for the peak shear strength of
soft rock discontinuities, the one with architecture 7-20-1
had the best performance since it provided in both the train-
ing and testing phases a correlation between the experimen-
tal data and results calculated by the neuronal model equal
to 0.99 after 337,000 iterations. Figure 6 illustrates the ar-
chitecture of the proposed neuronal model whose synaptic
weights between the different neuron layers and their bi-
ases are addressed in Tables 5 to 7.

5.2 Validation of ANN model

As mentioned earlier, validation of the proposed neu-
ronal model after the training and testing phases consists of
comparing the results with their application and test data
for different soft rock discontinuities.

Figure 7 shows comparisons of the failure envelopes
from direct shear test results carried out under CNL condi-
tions presented by Shrivastava & Hao (2017), the results
from the proposed ANN model and those ones estimated

N ?\A N \\\
ANTARTIT RN

Output Layer
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Table 5. Synaptic weights (wki) and bias (bk) of neurons in hidden layer.

Input Hidden layer
1 2 3 4 5 6 7 8 9 10
X, 0.1416 -0.8811 0.193 -0.1562 0.0562 -2.3061 -1.9421 3.0309 1.375 0.526
X, -0.2145 -0.0837  -0.5042 0.3932 -0.2649 2.3582 -3.7504  -0.8594 0.4828 -0.365
X, 0.0063 0.16 0.8752 -1.1484  -0.1157 12.786 0.5292 -1.5711 -2.5849 0.1757
X, -0.2017 0.7687 -0.3094 0.6241 -0.4964 0.7973 5.2511 -1.2502 0.829 -0.2095
X, 0.1704 -0.0202  -0.4904  -0.1536  -0.2423 1.6387 -0.2118 0.0581 0.3203 0.0923
X, 0.2337 -1.1127 0.6014 -0.1615 -0.5537 1.2615 -2.7554 3.2622 0.4041 0.301
X, -0.2355 -0.5445 0.6088 -0.0838  -0.5975 3.0077 2.8265 -0.5001 -2.133 0.0831
Bias 0.289 0.4365 0.0379 -0.1559  -0.0911 -1.5388  -0.4761 0.4959 0.7315 0.2195
Table 6. Synaptic weights (wki) and bias (bk) of neurons in hidden layer (cont.).
Input Hidden layer
11 12 13 14 15 16 17 18 19 20
X, -3.2523 -4.881 -0.5783 0.5272 1.5663 0.0281 -0.3282  -0.3803 -3.2965 -2.6106
X, -2.3051 -3.6737 5.3678 -0.7055  -1.1681 0.0205 0.2985 0.3775 1.3031 3.7516
X, -4.9798  -6.6378  -4.9182 0.899 -0.5241 -0.1658  -0.4961 -0.4149 22127 0.3535
X, 0.9742 0.773 -3.1227  -0.5871 -15.764 0.1729 0.0643 0.7375 4.4023 2.8022
X 0.217 -1.6545 3.8664 -0.9088  -1.2279 0.0344 0.3095 0.0699 0.0123 1.0277
X, 0.9007 2.5998 -0.7639 0.7168 2.54 0.0568 -0.6372  -0.7115 -1.2114  -1.3662
X, 0.1656 3.262 -0.443 1.2052 -0.427 -0.0958  -0.3801 -0.7264 2.7936 -2.4229
Bias 1.6647 1.2909 4.5642 0.1562 -0.2943 0.1202 0.0439 0.1577 -0.1563 -0.0681
Table 7. Synaptic weights (wki) and bias (bk) of neurons in output layer.
Output Hidden layer
1 2 3 4 5 6 7 8 9 10
t -0.0815 -1.8272  1.0229 -1.3309 -0.6106 5.8633  2.8745 3.363 -3.4452  0.3857
Output Hidden layer
11 12 13 14 15 16 17 18 19 20 Bias
t 4.1295  -4.2364 -45397 1.6681 -7.9778 -0.4047 -1.1373 -1.6871 -4.4917 3.0341 -1.0859

based on the analytical model by Barton and Choubey
(1977) for a soft rock discontinuity with ¢, = 11.75 MPa,
JRC =15, ¢, = 30° and infill material with ¢,, = 28.8°. The
results show that the neuronal model is able to interpolate
the experimental data, and to represent the nonlinear behav-
ior of the failure envelopes as the influence of normal stress
and the presence of the infill in the peak shear strength of
soft rock discontinuities. Moreover, it more realistically re-
produces the shear behavior of the unfilled discontinuity
(t/a = 0) than the analytical model of Barton & Choubey
1977).
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Figure 8 shows the variations in the peak shear
strength with the #/a ratio for the soft rock discontinuities
studied by Haque and Indraratna (2000) under CNS condi-
tions with k, = 453 kPa/mm, JRC =4 and 8, 6, = 12 MPa
and ¢, =37.5°, and those obtained by the proposed neuronal
model with architecture 7-20-1 for a initial normal stress
(o,) equal to 0.56 MPa, with the infill material of
¢, = 35.5°. The results show that the neuronal model once
again satisfactorily fit the experimental data and it is also
able to express the increase in peak shear strength with the
rise in roughness of the discontinuity to low #/a ratio values,
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and the drop in peak shear strength with the increase in the
t/a ratio. Similar results were achieved with the neuronal
model for soft rock discontinuities and with very low uni-
axial compressive strength values (o, = 3.5 MPa),
JRC=12,c,,=0.1 MPa, ¢, =30° and ¢,, = 30° like those
studied by Papaliangas et al. (1993) under CNL conditions,
as shown in Figure 9.

Table 8 shows the contribution in percentages of
each input variable in the proposed neuronal model’s re-
sponse with architecture 7-20-1 provided by software
QNET2000. The results show that within the input vari-

Table 8. Contribution of input variables to the model’s response.

k I/a Gu() JRC G(’ ¢l) ¢ﬁll

n

6 % 13% 33% 20% 9 % 9 % 10 %

ables considered, the initial normal stress, roughness and
t/a ratio, that is, the infill, contribute the most in the pre-
diction of the value of the peak shear strength of soft rock
discontinuities. Since none of the input variables had a
much smaller contribution than the others, the general

351 —e—t/a=0: EXP
= 304 —©—ta=0: ANN
= 55 | —A—ta=1;EXP
= ) - A— t/a=1 ; ANN
£ 2.0 1 ——Barton & Choubey (1977)
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Figure 7. Failure envelopes for soft rock discontinuities from Shrivastava & Hao (2017).
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Figure 8. Variation in shear peak strength with the #/a ratio for soft rock discontinuities from Haque & Indraratna (2000).
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Figure 9. Variation of the shear peak strenght with the #/a ratio for very soft rock discontinuities from Papaliangas et al. (1993).
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conclusion is that every variable considered in develop-
ing the model is relevant regarding the prediction of the
peak shear strength of the soft rock discontinuities stud-
ied.

5.3 Routine for the use of neuronal model

When developing a neuronal model, the knowledge
regarding the phenomenon studied is stored in the values of
the synaptic weights and bias obtained after completing the
training and testing processes and having made the due val-
idations on the model’s behavior. Therefore, knowing
about these parameters helps implement the neuronal mo-
del in any calculation spreadsheet without requiring spe-
cific software, thereby facilitating the use of the predictive
model in practical problems in the Rock Mechanics field.

First, after defining the boundary conditions, rough-
ness, intact rock properties and characteristics of the infill
material, the input parameters of the rock discontinuity
must be normalized using the expression in Equation 20
and the information provided in Table 4. Once the normal-
ized values of the input parameters are in hand, each hidden
layer neuron is calculated using the data presented in Ta-
bles 5 and 6, and Equations 10-12, adopting the expression
in Equations 19 to calculate the output signal of each hid-
den layer neuron.

Having calculated all hidden layer neurons, their
feedforward values calculate the output layer neuron, using
the same aforementioned calculation sequence and the syn-
aptic weights and bias in Tables 7 and 8. After using the sig-
moid function to calculate the model’s response, the peak
shear strength of the rock discontinuity in the units system
in Table 4 is obtained by transforming the normalized value
for the neuron in the output layer also using Equation 20.

The ANN model can be easily used for the represen-
tation of constitutive models in numerical analysis. This
can be performed using the input variables and the values
presented for the synaptic weights and biases in some code
to predict the shear behavior of the infilled rock joints.

6. Conclusions

The proposed neuronal model was obtained from 115
large-scale direct shear test results, and the use of 80 % of
data available for training and 20 % for validation was effi-
cient, since the proposed neuronal model not only satisfac-
torily interpolated the test data but was also able to
represent the impact of the input variables on the shear
strength of soft rock discontinuities, such as, for example,
the increase in the peak shear strength with rise in normal
stiffness, initial normal stress, roughness and its drop with
the increase in the #/a ratio. It is worth mentioning, within
the input variables used to develop the proposed neuronal
model, the initial normal stress (o, ) and ratio (#/a) as those
that most contribute to the model’s response.

It is found from the results that the neuronal model
that performed best had an architecture 7-20-1, that is, was
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made up of 7 input variables (normal stiffness, t/a ratio,
JRC, uniaxial compressive strength of intact rock in the dis-
continuity, basic friction angle, and internal friction angle
of infill material), 20 neurons in a single hidden layer, the
answer being the peak shear strength of soft rock disconti-
nuities. For this model, a correlation was obtained between
the calculated and test results of 0.99 after 337,000 itera-
tions in both the training and testing phases.

Since one of the critical characteristics of the artificial
neural networks is their capacity to generalize, the pro-
posed neuronal model has diverse application, despite be-
ing developed using input data within certain value ranges.
Once limitations can be considered only that their applica-
tion should be restricted to soft rock discontinuities, and
should infill material be present, it is of a granular nature,
since in the proposed neuronal model the cohesion mecha-
nism was not considered to represent the shear strength of
the fill material.

Lastly, it is found that the use of multilayer percep-
trons for modelling complex, nonlinear and multivariate
phenomena, as in the present case of the shear behavior in
soft rock discontinuities it is a valuable tool. Results ob-
tained from the ANN model can be considered satisfactory,
even when compared to the use of well-established analyti-
cal models. One of its many benefits is the fact that once the
training and testing processes are over, and the model duly
validated, knowing the architecture of the network, synap-
tic weights, bias and activation functions of all neurons, it is
easy to implement the model in calculation spreadsheets
without requiring major computer resources or complex
laboratory parameters which availability is still limited.

It is worth emphasizing that the use of artificial neural
networks as tools to predict engineering phenomena would
not replace any necessary test procedures to determine
geotechnical properties of the materials involved in some
problem. This tool appears only as an initial additional
means to achieve a satisfactory response to a certain prob-
lem in order to optimize all the experimental work required.
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