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Abstract
To investigate the effect of particle size on mechanical properties of calcareous sand, a
series of consolidated drained triaxial tests were performed on calcareous sand with dif-
ferent particle sizes. At a low effective confining pressure of 50 kPa, the shear peak
strength increases with the increasing particle size. However, under a relatively large ef-
fective confining pressure (� 200 kPa), the shear peak strength decreases with the in-
creasing particle size. Moreover, the apparent cohesion increases, and the corresponding
friction angle decreases with the increase of particle size. The softening and dilatancy co-
efficient were proposed to evaluate the softening and dilatancy behaviour quantitatively.
Calcareous sands with larger particle size show the greater strain hardening and volume-
tric contraction behaviour, which is more susceptible to the effective confining pressure.

1. Introduction

Calcareous sand, which is primarily composed of re-
mains of coral and snail, is largely located in tropical or
subtropical areas around the world, such as South China
Sea, Red Sea, the Hormuz Island and the Persian Gulf
(Coop et al., 2004; Morsy et al., 2019; Shahnazari et al.,
2016; Suescun-Florez & Iskander, 2017; Wang and Jiao,
2011). In ocean geotechnical engineering, calcareous sands
are commonly used as the backfill material for road em-
bankments or airport runways (Wang et al., 2011; Xiao et
al., 2019). As an essential part of construction material, the
physical and mechanical properties of calcareous sand have
attracted increasing research attention. The character of
calcareous sands is quite different from that of terrigenous
sands, exhibiting the irregular particle shape, the high Cal-
cium carbonate content, and the large internal voids (Liu et
al., 2019; Mcdowell & Bolton, 2000). As a result of these
special physical properties, calcareous sands exhibit typical
characteristics such as costly saturation (Lade et al., 2009),
large strains to failure (Wei et al., 2018), high compressibil-
ity (Yang et al., 2017), and a dilative behaviour at low rela-
tive densities (Hyodo et al., 1998; Wang & Zhu, 2018). For
granular materials, it is widely acceptable that the particle
size effect can affect the mechanical properties signifi-
cantly. A large number of studies for particle size effect of
granular materials have been reported. Generally, the shear

strength of particle assemblies increases with the increase
in elementary particle size (Dadkhah et al., 2010; Wen et
al., 2018; Varadarajan et al., 2003). Although there have
been a few works that have addressed the mechanical prop-
erties of calcareous sand including shearing characteristics
(Desrosiers et al., 2002; Salehzadeh et al., 2006; Pham et
al., 2017; Zhang et al., 2018), compression characteristics
(Yang et al., 2017) and hydraulic characteristics (Wang et
al., 2019; Xiao et al., 2018), most of them have not focus on
the particle size effect of calcareous sand. In practical engi-
neering, the particle sizes of calcareous sands are in the
range of some millimetre to some dozen-millimetres. For a
comprehensive understanding of the engineering character-
istics of calcareous sands, it is significant to analyse the ef-
fect of particle size on mechanical properties of calcareous
sands.

In this study, a series of consolidated drained triaxial
tests for calcareous sand with different particle sizes were
performed. Based on the experimental results, the effect of
particle size on strain-stress responses and volumetric re-
sponses were obtained. Moreover, the apparent cohesion
and friction angle based on the Mohr-Coulomb failure cri-
terion for different particle sizes were further analysed.
Furthermore, the empirical softening index and dilatancy
index were proposed to evaluate the effect of particle size
on strain softening and dilatancy quantitatively.
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2. Materials and methodology

The calcareous sand used in this study was obtained
from Nansha islands in south of China. The calcareous sand
particles own irregular and angular appearance which con-
tains numerous cavities. Six groups of calcareous sand with
particle sizes of 5-2 mm (G1), 2-1 mm (G2), 1-0.5 mm
(G3), 0.5-0.25 mm (G4), 0.25-0.075 mm (G5), and
0.075-0 mm (G6) were adopted by sieving, as shown in
Figure 1. Following the standards JTG E40-2007 (RIOH,
2007), the specific gravities (Gs) and the maximum (�max)
and minimum (�min) dry densities of six particle size groups
of calcareous sand are tabulated in Table 1.

The mode SLB-1 stress strain controller triaxial shear
permeation test apparaus used in this study. The maximum
axial pressure of this apparatus is 600 kN. The measuring
capcacity of confining pressure, back pressure, and pore
pressure are all 3 MPa with a resolution of 1 kPa.

In the following traxial tests, the conventional sam-
ples with 39.1 mm in diametr and 80 mm in height were as-
sembled by the same relative density of 70 % for different
particle size groups. The saturation process was conducted
by the method of water head staturation combined withg
back pressure saturation suggested by Yang et al. (2018).

The samples are considered to be fully saturated when the
Skempton’s parameter B is greater than 0.95. Following
this step, the samples were isotropically consolidated under
different effective confining pressures of 50, 200, 400, and
800 kPa. Finally, all samples were sheared at a specific ax-
ial loading rate of 0.1 mm/min. It should be noted that all
the tests were performed under drained conditions.

3. Results and discussions

3.1 Effect of particle size on stress-strain responses

Figure 2 shows the stress-strain responses of calcare-
ous sand samples with different particle sizes under various
effective confining pressures. At a low effective confining
pressure (�3 = 50 kPa), the calcareous sand samples for dif-
ferent particle sizes exhibit slight strain softening behav-
iour, which is consistent with the shear behaviour of dense
quartz sand. However, as the effective confining pressure
increases (� 200 kPa), the samples with particle size rang-
ing from 5 (G1 sand) to 0.25 mm (G4 sand) exhibit strain
hardening behaviour. Similar results have also been re-
ported by Hyodo et al. (1998). They suggested that the
strain softening can be suppressed by the particle breakage
induced by the high stress level, leading to a strain harden-
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Table 1. Basic physical properties of calcareous sand.

Size groups G1 G2 G3 G4 G5 G6

Gs 2.790 2.791 2.792 2.795 2.801 2.811

�max (g/cm3) 1.131 1.000 1.047 0.999 1.303 1.442

�min (g/cm3) 0.678 0.683 0.743 0.747 0.925 1.045

Figure 1. Original calcareous sand particles with different size groups.



ing behaviour in stress-strain response and a contraction
behaviour in volumetric strain. Furthermore, for the sam-
ples with particle size ranging from 0.25 to 0.075 mm (G5
sand), a strain hardening behaviour is triggered by an effec-
tive confining pressure of 800 kPa, which is more than
200 kPa for the samples with particle size ranged from 5
(G1 sand) to 0.25 mm (G4 sand). This indicates that the ef-
fective confining pressure corresponding to a strain soften-
ing-hardening transition increases with the increase in
particle size, which is further supported by the fact that the

samples with particle size smaller than 0.075 mm (G6 sand)
still demonstrate a strain softening behaviour under the ef-
fective confining pressures of 800 kPa. Similar results can
also be found in Wang et al. (2018). This phenomenon is
caused by the difference in particle breakage, dependent on
the particle size, and is explained as follows. The sample
with larger particles having lower particle crushing
strength can be crushed easily under a low effective confin-
ing pressure, which increases the deviatoric stress and leads
to a strain hardening behaviour. For the samples with smal-
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Figure 2. Stress-strain responses for different particle sizes: (a) G1: 5-2 mm, (b) G2: 2-1 mm; (c) G3: 1-0.5 mm, (d) G4: 0.5-0.25 mm, (e)
G5: 0.25-0.075 mm, (f) G6: < 0.075 mm.



ler particles, the effective confining pressure corresponding
to a strain softening-hardening transition increases owing
to the contributions of higher particle crushing strength.

The relationships between the shear peak strength and
particle size under various effective confining pressures are
shown in Figure 3. It is apparent from Figure 3 that the
shear peak strength of calcareous sand under different ef-
fective confining pressures depends on the particle size.
The shear peak strength decreases with the decreasing par-
ticle size under the effective confining pressure of 50 kPa.
However, under relatively large effective confining pres-
sure (�3 � 200 kPa), the shear peak strength increases with
the decreasing particle size. In addition, the shear peak
strength of samples with small particles is more susceptible
to the effective confining pressure upon increasing particle
crushing strength compared to samples with large particles,
so that there is a significant increase in the peak shear
strength for effective confining pressures higher than
400 kPa for groups G5 and G6.

3.2 Effect of particle size on volumetric responses

Figure 4 presents the volumetric responses of calcare-
ous sand samples with different particle sizes under various
effective confining pressures. In Figure 4, the volumetric
strain is positive for contraction. Experimental observa-
tions show that the dense calcareous sand samples are more
likely to exhibit volumetric contraction behaviour under
high effective confining pressure. Furthermore, a higher ef-
fective confining pressure produces a larger volumetric
contraction. There is a higher probability for the calcareous
sand particles to break under higher effective confining
pressure, which reduces the volumetric dilatancy. How-
ever, at a low effective confining pressure (�3 = 50 kPa), the
samples with particle size ranged from 5 (G1 sand) to 1 mm
(G2 sand) demonstrate slight volumetric contraction at a
relatively large axial strain, which is considered to be pro-
duced by the particle breakage induced by the increasing
deviatoric stress during shearing.

3.3 Effect of particle size on apparent cohesion and fric-
tion angle

Traditionally, shear strength of granular materials is
represented by the Mohr-Coulomb failure criterion, which
can be expressed as follows:

� � �� �c n tan (1)

where � is the shear strength of the sample; c is the apparent
cohesion; �n is the normal stress on shear plane; � is the
friction angle.

According to the Mohr-Coulomb failure criterion,
both the apparent cohesion and the friction angle for all
samples with different particle sizes were obtained. Figu-
re 5 illustrates the relationships between the Mohr-Cou-
lomb strength index and particle size. Obviously, both the
apparent cohesion and the friction angle are strongly de-
pendent on the particle size, which is in accordance with the
experimental results reported by Wang et al. (2018), shown
in Figure 5. Generally, the quartz sand is considered to be
non-cohesive, exhibiting a friction angle of about 30°.
However, the calcareous sand samples have a high apparent
cohesion which decreases with the decreasing particle size.
As calcareous sands consist of corals, shells, and alga, the
particle shapes are columnar, dendritic, honeycomb, or
sheet (Shahnazari et al., 2016; Wang et al., 2018). There-
fore, grain interlocking between coarse particles behaves as
apparent cohesion in shearing. Besides, as stated by Wang
et al. (2018), the large calcareous sand particle is more ir-
regular and angular in shape than the smaller calcareous
sand particle, leading to a higher apparent cohesion. For the
samples with particle size less than 0.075 mm (G6 sand),
the apparent cohesion is almost zero, indicating that the
shear strength is more likely to be supplied by the friction
component rather than the cohesion component. Besides, it
is also can be seen that the friction angle increases with the
decreasing particle size.

3.4 Effect of particle size on strain softening and dila-
tancy

In order to further analyse the softening behaviour of
calcareous sand with different particle sizes, the empirical
softening index is proposed, which can be calculated as fol-
lows:

	 �

q q

q
p r

p

(2)

where qp is the shear peak strength, qr is the reference
strength, which is taken as the deviatoric stress correspond-
ing to an axial strain of 20 %, as shown in Figure 6. For the
strain-stress responses exhibiting a strain hardening behav-
iour, qp and qr are taken as the deviatoric stress correspond-
ing to an axial strain of 15 % and 20 %, respectively. Based
on definition of the empirical softening index, the samples
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Figure 3. Relationships between shear peak strength and particle
size.



exbibit a strain softening behaviour with 	 > 0, whereas the
samples exbibit a strain hardening behaviour with 	 � 0.

The relationships between the empirical softening in-
dex and confining pressure for different particle sizes are
illustrated in Figure 7 on a semi-logarithmic scale. Signifi-
cant linear relationships were obtained between the empiri-
cal softening index and the effective confining pressure for
different particle sizes, which could be expressed as
	 = k

	
log(�3) + b

	
. For the samples with particle size ranged

from 5 (G1 sand) to 0.075 mm (G5 sand), the empirical

softening index decreases with the increasing effective con-

fining pressure, implying that the strain softening behav-

iour is more obvious under a lower effective confining

pressure. In addition, it is also can be found that the strain

softening behaviour is slightly influenced by the effective

confining pressure for the samples with particle size less

than 0.075 mm (G6 sand).
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Figure 4. Volumetric responses for different particle sizes: (a) G1: 5-2 mm, (b) G2:2-1 mm, (c) G3: 1-0.5 mm, (d) G4: 0.5-0.25 mm, (e)
G5: 0.25-0.075 mm, (f) G6: < 0.075 mm.



An empirical dilatancy index is also proposed to eval-
uate the dilatancy behaviour quantificationally. The empir-
ical dilatancy index is defined as:

�

 



 

�







vc vp

qc qp

(3)

where 
vc is the volumetric strain at d dv
p

q
p


 
/ � 0 , with d v
p




being the increment of volumetric plastic strain and d q
p


 be-
ing the increment of axial plastic strain. 
vp is the volumetric
strain corresponding to the shear peak strength. 
qc and 
qp

are the axial strain corresponding to 
vc and 
vp, respectively.
Based on the definition, the samples exbibit a volumetric
contraction behaviour continuously with � � 0, whereas the
samples exbibit a volumetric dilatancy behaviour with
� < 0. The corresponding values of four parameters (e.g.,

vc, 
vp, 
qc, and 
qp) mentioned above for different types of
volumetric responses are shown in Figure 8. Note that both
the 
vc and 
qc are assumed to be zero for the type D volumet-
ric response.
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Figure 7. Relationships between empirical softening index and
effective confining pressure for different particle sizes.

Figure 8. Representation of the empirical dilatancy index.Figure 6. Representation of the empirical softening index.

Figure 5. Relationships between Mohr-Coulomb strength index and particle size: (a) apparent cohesion, (b) friction angle.



Figure 9 shows the relationships between the empiri-
cal dilatancy index and the effective confining pressure for
different particle sizes. As shown in Figure 9, the empirical
dilatancy indexes are linearly related to the effective con-
fining pressures in semi-logarithmic scale, which can be
described by � = k

�
log(�3) + b

�
. It is found that the empirical

dilatancy index for different particle sizes increases with
the increasing effective confining pressure, indicating that
the volumetric dilatancy behaviour is suppressed by the in-
creasing effective confining pressures. For calcareous sand,
the particle breakage has a significant influence on the vol-
umetric behaviour (Bandini & Coop, 2011; Shahnazari et
al., 2014; Shahnazari et al., 2015). It seems that both a
higher effective confining pressure and a larger particle
size can lead to a larger extent of particle breakage, which
reduces the volumetric dilatancy (Wang et al., 2018; Shah-
nazari et al., 2015). It can be concluded that the volumetric
behaviour of calcareous sand sample is the result of syn-
ergy of particle breakage and dilatancy (Wang et al., 2018).
In addition, for G6 sand, the samples exhibit a volumetric
dilatancy behaviour under various effective confining pres-
sures.

4. Conclusions
To investigate the effect of particle size on mechani-

cal properties of calcareous sand, a series of consolidated
drained triaxial tests were performed on calcareous sand
with different particle sizes. The test results indeed reveal
the effect of particle size on the shear behaviour of dense
calcareous sands. The following main conclusions are
drawn from the present study:
(1) The shear peak strength, the apparent cohesion, and the

friction angle are all dependent on the particle size. At
a low effective confining pressure of 50 kPa, the shear
peak strength increases with the increasing particle
size. However, under a relatively large effective con-

fining pressure (� 200 kPa), the shear peak strength
decreases with the increasing particle size. Moreover,
the apparent cohesion increases, and the correspond-
ing friction angle decreases with the increase of parti-
cle size.

(2) The high effective confining pressure may lead to strain
hardening behaviour for dense calcareous sand sam-
ples, corresponding to contraction in volumetric
strain. The softening and dilatancy indexes were pro-
posed to evaluate the softening and dilatancy behav-
iour quantitatively. Calcareous sands with larger parti-
cle size showed the greater strain hardening and volu-
metric contraction behaviour, which is more
susceptible to the effective confining pressure.

(3) In order to further investigate the particle size effect of
shear behaviour of dense calcareous sands, a compre-
hensive analysis should be combined with the micros-
tructure of calcareous sands. In addition, it is also
worthwhile to explore the engineering characteristics
of calcareous sands with different gradations under
complex stress conditions.
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