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Cubic law In this study, a particle-based approach is employed to simulate the fluid flow through
Fracture

single fractures considering detailed geometrical characteristics of the fracture walls at
meso-scale. For this purpose, Lattice Boltzmann Method (LBM) which is an efficient
computational fluid dynamic method for simulation of fluid flow in media with grossly
irregular geometries is employed. The developed numerical model is validated against
some benchmark problems with available theoretical solutions including fluid flow
through planar channel with non-parallel walls and non-planar channel with parallel
walls. The results indicate the capability of the developed numerical model for simula-
tion of flow through irregular boundary conditions of natural fractures. The effect of the
variability of fracture aperture, tortuosity of fracture centerline and roughness of fracture
walls on the volumetric flow rate is investigated. Moreover, appropriate definition of hy-
draulic aperture as the key parameter of the well-known cubic equation for estimation of
volumetric flow rate in natural fractures is evaluated by numerical simulation of ran-

Hydraulic aperture
Lattice Boltzmann method

domly generated fractures with various geometrical conditions.

1. Introduction

The understanding of fluid flow behavior and accu-
rate estimation of flow rate in fractured media is essential
for many engineering applications. Groundwater flow and
solute transport in rock mass are typically controlled by
fractures as the preferential flow pathways. The estimation
of fluid flow through fractured reservoirs for prediction of
oil or natural gas production is of great importance in petro-
leum industry. Moreover, fluid flow behavior in fractured
rocks should be appropriately identified in engineering
problems such as geothermal energy extraction, liquid was-
te disposal/injection and grouting activities (Singh et al.,
2015).

Laboratory and field measurement are usually con-
sidered as reliable sources for obtaining the rate of fluid
flow through fractured media. However, most experimental
techniques fail to directly observe the details of the flow be-
haviors in real fractures which are locally influenced by the
complex geometry of the fractures (Wang et al., 2016). Al-
ternatively, analytical relationships and numerical model-
ing can be used for investigation of flow behavior. Because
of the inherent flexibility of numerical modeling in incor-

porating various conditions, these tools can be used besides
the laboratory and field tests for fluid flow measurement.

Generally, study of fluid flow in a medium containing
a network of natural fractures requires understanding the
controlling mechanisms of fluid flow through a single frac-
ture. For precise description of fluid flow through a single
fracture, the Navier-Stokes equations of hydrodynamics
should be solved. However, fluid flow in a natural fracture,
which is normally bounded by two irregular walls with
rough surfaces, is complex even under a laminar flow re-
gime. Therefore, fluid flow through fractures is typically
conceptualized by using the assumption of laminar flow be-
tween parallel plates.

The parallel-plate solution for the Navier-Stokes
equations leads to the commonly used “cubic law” (Lomi-
ze, 1951; Louis, 1969; Kranzz et al., 1979; Tsang & Wi-
therspoon; 1983; Klimczak et al., 2010, Wang et al., 2015).
The cubic law (CL) states that the volume rate of fluid flow
across a section in such a fracture is proportional to the ap-
plied pressure gradient and the cube of the separation dis-
tance. The important implication of the cubic law is that
fluid flow may be fully characterized by the separation
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distance, called “aperture,” although the velocity varies
across that distance (Ge, 1997).

The equivalent aperture that gives the same fluid flow
rate by cubic law, called the hydraulic aperture, is normally
smaller than the actual opening displacement of the fracture
or mechanical aperture (Klimczak et al., 2010). This is
mainly due to several important features that are not sup-
ported by the simple CL including throats along the path of
flow, tortuosity of flow through natural channels and sur-
face roughness of fracture walls (Neuzil & Tracy, 1981;
Walsh, 1981; Tsang, 1984; Walsh & Brace, 1984; Tsang &
Tsang, 1987; Brown et al., 1995; Nicholl et al., 1999;
Klimczak et al., 2010). All of these factors lead to an in-
crease in the energy dissipation over that predicted by the
CL, resulting in lower observed flow rates than the ideal.

Several different modifications of the CL have been
proposed to account for the abovementioned effects on the
flow behavior averaged over a single fracture. These modi-
fications usually have been considered either by applying a
correction factor to incorporate other involving factors into
conventional cubic law (e.g. Lomize, 1951; Louis, 1969;
Patir & Cheng, 1978; Witherspoon et al., 1980; Walsh,
1981; Walsh & Brace, 1984; Zimmerman et al., 1991;
Gutfraind & Hansen, 1995) or by utilizing alternative defi-
nitions of mean aperture (e.g. Neuzil & Tracy, 1981; Tsang
& Witherspoon, 1981; Brown, 1987; Hakami & Barton,
1990; Tsang & Tsang, 1990; Unger & Mase, 1993; Ren-
shaw, 1995; Nicholl et al., 1999; Méheust & Schmittbuhl,
2001, Baghbanan & Jing, 2007, Akhavan et al., 2012).

In this study, 2D meso-scale modeling of fluid flow
through a single fracture using Lattice Boltzmann Method
(LBM) has been considered. Unlike the traditional compu-
tational fluid dynamics (CFD) methods that directly solve
the Navier-Stokes equations, LBM actually simulates mac-
roscopic flows by means of a particulate approach. The par-
ticle-like nature of LBM permits a transparent treatment of
grossly irregular geometries of fracture walls in terms of el-
ementary mechanical events, such as mirror and bounce-
back reflections without comprising great computational
costs.

In this work, the applied numerical method has been
validated by simulation of the fluid flow through channels
with simple geometries. The effects of variable fracture ap-
erture, fracture tortuosity, and roughness of fracture sur-
faces on the rate of fluid flow through a single fracture has
been investigated using the developed numerical tool.
Moreover, different definitions of hydraulic aperture have
been evaluated by numerical simulation of randomly gen-
erated fractures with various geometrical conditions.

2. Cubic law

Solving the Navier-Stokes equations under a set of
boundary conditions will provide details on pressure and
flow velocity distributions in discrete fractures. In general,
the explicit treatment of fracture surfaces as boundary con-
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ditions complicates the approach and does not lead to sim-
ple solutions. However, according to Zimmerman et al.
(1991), under certain geometric and kinematic constraints,
the Navier-Stokes equations can be locally reduced to the
much simpler Reynolds (Equation 1).

V-[d*(x,y)Vpl=0 ey

where (x, y) are orthogonal coordinates in the plane of the
fracture, d is local aperture of the fracture, and p is fluid
pressure. One of the requirements for the Reynolds equa-
tion to be valid is the viscous forces dominate the inertial
forces (very small Reynolds number). Equation 1 is a linear
partial equation that describes the pressure field in the frac-
ture plane. The volumetric flow rate per unit width perpen-
dicular to the direction of flow is then related to the
pressure, as presented in Equation 2 (Zimmerman et al.,
1991).

d’(x,y)

="

Vp (@)

where Q is the volumetric flow rate, and pis the dynamic
viscosity of the fluid.

For an ideal laminar flow through two smooth paral-
lel plates, Equation 2 is simplified to the well-known cubic
law (CL), which has the form described by Equation 3
(Bear et al., 1993).

=L 3)

where Ap/AL is the magnitude of the pressure gradient.

Due to the approximate planar nature of fractures,
flow behavior in discrete fractures has often been assumed
to be similar to flow through two smooth, parallel plates.
The major factor causing deviation of predicted fracture
flow behavior from the ideal parallel plate theory is the na-
ture of non-parallel and non-smooth geometry of fracture
surfaces. Important questions on the validity of the cubic
law and the Reynolds equation for complicated fracture ge-
ometries have been studied by many researchers (Withers-
poon et al., 1980; Tsang & Witherspoon, 1983; Walsh,
1981; Brown, 1987; Zimmerman et al., 1991; Bear et al.,
1993; Oron & Berkowitz, 1998; Brush & Thomson, 2003).
The general conclusion from these efforts is that the cubic
law is valid provided that an appropriate mean aperture (hy-
draulic aperture) is used and modification factors for tor-
tuosity and surface roughness is applied. Many types of
mean apertures have been proposed, and for some cases,
some averaging procedures work better than others (Ge,
1997). Some of the proposed hydraulic apertures will be
discussed in this paper.

It should also be noted that laminar flow is assumed in
derivation of cubic law and therefore, the inertial effects of
flow is ignored where cubic law is used. For flows with
high Reynolds numbers (Re), large fluid velocity gradient
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across the aperture will occur. This results in a broader dis-
tribution of the immobile regions along the rough fracture
wall (Dou & Zhou, 2014). The immobile region is enlarged
with the increase of Re and roughness, and its impact
cantnot be captured using conventional cubic law. To char-
acterize the nonlinear flow through fractures, the complete
form of Navier-Stokes equations including the acceleration
and inertial terms should be adopted as the governing equa-
tion (Wang et al., 2016).

Surface roughness is one of the most important fac-
tors affecting the hydro-mechanical behaviour of rock frac-
tures. Pioneer study by Lomize (1951) was one of the
comprehensive efforts to indicate the accuracy of the cubic
law for laminar flow under low hydraulic gradient by con-
sidering a correction factor for surface roughness. Later,
the equation was confirmed by some other researchers (e.g.
Snow, 1965). Based on extensive experimental studies,
Louis (1969) proposed a similar reduction factor to be ap-
plied to the cube law (Equation 4).

d Ap 1

1.5
p AL F=(1+88R ") “)
where R, is relative roughness factor.

In this approach, the friction factor depends only on
the relative roughness and therefore, ignores the frequency
(or wavelength) of the asperities (Zambrano et al., 2019).
The roughness correction factor can be also calculated
based on the joint roughness coefficient (JRC) as proposed
by Barton et al. (1985). JRC has been widely used in
geotechnical and rock engineering applications and several
researchers used this coefficient to study the fluid flow
through rock fractures (Zhang & Nemcik, 2013; Crandall et
al., 2010; Niya & Selvadurai, 2019). However, the JRC is
estimated subjectively based on visual inspection of the
roughness profiles and the results always vary based on the
experience level of the investigator (Su et al., 2020). More-
over, the accuracy of JRC for relatively wide apertures de-
creases due to its moderate resolution, which is about 1 mm
(Zambrano et al., 2019).

Tortuosity is another important factor that influences
the connectivity of fluid flow paths because of fracture con-
tact area (Tsang 1984). Walsh & Brace (1984) investigated
the effects of tortuosity and presented an equation for flow
through the fractures (Equation 5).

d*> Ap 1

Q:@T? (%)

In Equation 5, the parameter t is the curvature coeffi-
cient of tortuosity that equals to the ratio of the actual length
to the apparent length of the flow path. The same tortuosity
modification factor was used by Nazridoust et al. (2006).

On the other hand, some researches focused on find-
ing modification coefficient based on distribution function
characteristics of the aperture (Tsang & Tsang, 1990; Ren-
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shaw, 1995; Zimmerman & Bodvarsson, 1996). For exam-
ple, Equation 6 presented by Zimmerman & Bodvarsson
(1996) allows the estimation of the volumetric flow rate
through rough fractures.

0_d' &

C,C, (6)
B 12u L

where C and C, are roughness and tortuosity correction fac-
tor, respectively that can be calculated based on arithmetic
average and standard deviation of aperture variation.

Various definitions of mean aperture (d), including
the arithmetic mean (AM), geometric mean (GM), har-
monic mean (HM), volume averaged mean (VAM), and ef-
fective aperture (EA) have been proposed to be applied into
the conventional cubic law in order to account for impor-
tant features that are not supported by the simple cubic law
(Akhavan et al., 2012). Most studies show that for natural
fractures, the cubic law calculates the amount of the flow
more than its actual quantity, especially if the arithmetic
mean value of aperture is used in the cubic law (Konzuk &
Kueper, 2004). In some studies, geometric average has
been suggested as a better representative of the hydraulic
aperture (Jensen, 1991; Renshaw, 1995; Konzuk & Kueper,
2004; Baghbanan & Jing, 2007). Some other researchers
believe that the flow is controlled by the least aperture
width along the flow path (e.g. Pyrak-Nolte et al., 1988).

Nazridoust et al. (2006) proposed an effective frac-
ture aperture (H,,) based the average aperture (H,,), and the
standard deviation of the fracture apertures (). For a nor-
mal distribution of the apertures, H,, given by Equation 7 is
an estimate of smaller apertures (the probability of a ran-
domly selected aperture in the fracture that is larger than H
is 84.14 %).

H, =H, -c (N

By extending a technique originally suggested by
Dietrich et al. (2005), Akhavan et al. (2012) indicate that ef-
fective aperture as defined by the following equation is the
appropriate representative of hydraulic aperture to be ap-
plied in cubic law:

1 n
d, =3->.d’ ®)
n =1

The equation can be derived simply by discretization
of a fracture into a series of local parallel channels with dif-
ferent apertures (d), and n is the number of fracture ele-
ments.

As an alternative approach to conventional CL, Equa-
tion 1 can be used to consider the local variation of aperture
explicitly. The Local Cubic Law (LCL) has been exten-
sively applied in investigations of fluid flow through frac-
tures (Zimmerman et al., 1991; Mourzenko et al., 1995;
Nicholl et al., 1999; Wang et al., 2015). Under LCL, local
flow magnitude is proportional to the cube of the local aper-
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ture. The local aperture can be measured using different
methods (Mourzenko et al., 1995; Ge 1997; Oron &
Berkowitz 1998; Wang et al., 2015). Ge (1997) provided
analytical solutions for fluid flow through two-dimensional
non-parallel and parallel fractures by considering the nor-
mal-to-local-centerline aperture. Wang et al. (2015) modi-
fied the LCL to take into account the local tortuosity and
roughness, and low inertial effects where local Re < 1. The
proposed LCL is more accurate than previous modifica-
tions of the LCL. However, the governing equation is a
nonlinear differential equation that should be solved nu-
merically.

The focus of this study is to investigate the use of hy-
draulic aperture in conventional cubic law. For this pur-
pose, several hydraulic aperture definitions have been nu-
merically investigated using the developed meso-scale
model. The numerical model has been validated against an-
alytical solutions proposed by Ge (1997) using local cubic
law approach for two problems including fluid flow
through single fracture with regular geometries.

3. Lattice Boltzmann method

During the last two decades, particle-based methods
such as Lattice Boltzmann Method (LBM) have been de-
veloped as a robust numerical approach in computational
fluid dynamics (CFD). In this method, macroscopic flow is
simulated by means of a particulate approach. It can be con-
sidered as a special finite-difference form of the continuum
Boltzmann equation, but historically it is a pre-averaged
improvement to its predecessor, the lattice-gas method
(Sangani & Acrivos, 1982; Chen & Doolen, 1998; Succi,
2001).

The fundamental idea of the LBM is to construct sim-
plified kinetic models that incorporate the essential physics
of microscopic or mesoscopic processes, so that the macro-
scopic averaged properties obey the desired macroscopic
equations (Pan et al., 2001). Unlike most of the other parti-
cle methods, LBM is a mesh-based method. In LBM, the
spatial space is discretized in a way that it is consistent with
the kinetic equation (Pan et al., 2001). The LBM simulates
the flow phenomenon by tracking fluid particles that move
and collide in space under the rules that the collision does
not result in mass and momentum changes.

In LBM, space is divided into regular lattices nor-
mally with the same spacing % in both directions and at each
lattice site a particle distribution function f(x, 7) is defined
which is equal to the probable amount of fluid particles at
site x moving in the direction of i at time 7. During each dis-
crete time step of the simulation (A¢), fluid particles move
to the nearest lattice site along their direction of motion
with different velocities of €, , where they “collide” with
other bundles of fluid particles that arrive at the same site.
The outcome of the collision is determined by solving the
kinetic (Boltzmann) equation for the new particle distribu-
tion function at that site and the particle distribution func-
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tion is updated. The magnitude of speed in different
directions which is called lattice speed is defined as C =
hiAt.

Propagation and collision of fluid particles in LBM
can be mathematically summarized by the below two-step
scheme (Egs. 9 and 10):

Propagation step:

F(x+& ALt +AL) = £7 (x, 1) )

and collision step:

S0 =Q,(f(x 1) (10)

The collision rule QQ should be chosen to leave the
sum of the f(x, #) unchanged (no fluid particles are lost.)
The rule is also selected to conserve the total momentum at
each lattice site. The collision process is mimicked by a dis-
tribution function rather than solving for collisions of every
fluid particle. Lattice-Boltzmann models can be construc-
ted using Fermi-Dirac or Maxwellian distributions as the
collision process (Engler, 2003). However, solving these
distribution functions is complicated and computationally
expensive.

The single relaxation time operator, also known as
Bhatnagar-Gross-Krook (BGK) operator after Bhatnagar et
al. (1954), is an uncomplicated approach which simply ap-
proximates the collision by assuming that the momentum
of the interacting fluid particles will be redistributed at
some constant rate toward an equilibrium particle distribu-
tion function £, . BGK allows one to solve the equilibrium
distribution such that the microscopic equations are satis-
fied and the N-S equations are recovered. In BGK lattice
Boltzmann method, the collision rule is given by:

At p

Qi(x,l)=f,-(x,t)—7(f,-(x,t))—f,-q(x,t) (11)
where f is the local equilibrium density distribution for
the fluid and A is relaxation parameter.

The two-dimensional model implemented in this
study uses a square, nine-velocity lattice typically referred
to as D2Q9 model. For this model, £ is given by Eqgs. 12
and 13, presented by Qian et al. (1992).

3 - -
“=w p|l1- /2%
0 Op( 2C2 j

(12)

f‘ie‘i :Wlp|:1+;(a ‘7)"1‘ 222 (E, ‘7)2

(13)
3

2C*

(\7-\7)} i=12,...8

where p and V are macroscopic fluid density and velocity
and w, are the fixed weighting valuesw, =3, w

4 1
9> 1,2,3,4 — 9
and w

— 1
5,6,7.8 ~ 36"
The macroscopic parameters are regained by:
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p=2/ (14)
i=0
_ i=8
p-V=Y f-¢ (15)
i=0
P=CJp (16)

where P is pressure and C, is termed fluid’s speed of sound
which is related to the lattice speed by C, =C/ V3. The

dimensionless relaxation parameter T = A/At is related to the
kinematic viscosity of the fluid v by Equation 17.

1 ( 1 ) h?
v=—|T1——|—
3 2) At
A constraint to the parameter selection is that the lat-
tice speed C must be sufficiently larger than the maximum
fluid velocity (V) in the simulation to ensure a sufficient
solution accuracy. This is calculated by the ‘computational’
Mach number, defined by Ma = V_ /C. Theoretically it is
required that Ma << 1. In practice, Ma should be, at least,
smaller than 0.1 (Feng et al., 2007). This becomes very im-
portant in modeling fluid flow through packing of solid par-
ticles, when fluid particles may have high velocities in
small communication between channels (Succi, 2001).
In classical fluid dynamics, the interface between the
solid boundaries and the flowing fluid is assumed to be a
non-slip boundary. Simulating slip and non-slip boundaries
in the LBM is an area where progress is still being made
(Qian et al., 1992; Noble et al., 1995). Among the existing
methods, the simplest is called ‘bounce-back’ method. In
this approach, to ensure that the fluid particles have zero av-
erage velocity at the boundaries (both perpendicular and
parallel to the walls): any flux of fluid particles that hits a
boundary simply reverses its velocity so that the average
velocity at the boundary is automatically zero. This type of
boundary is utilized in this study. For this purpose, fracture
walls should be characterized by the lattice nodes. The dis-
crete nature of the lattice will result in a stepwise represen-
tation of the curve boundaries, so for acquiring the required
accuracy and smoothness, sufficiently small lattice spacing
is used.

4. Model validation

a7

4.1 Planar channel with non-parallel walls

Equation 3 is valid for a smooth, straight, and parallel
plate fracture. However, natural fractures rarely have such
characteristics. Here, to validate the LB model in simula-
tion of fractures with irregular walls, fluid flow through a
planar channel but with zigzag walls, as illustrated in Fig-
ure la, was modeled. Higher ratios of zigzag height to
channel width (h/d,) show channels with variable width
along the length of the channel. On the other hand, lower
hid,. ratios represent channels with rough wall surfaces. Ge
(1997) provided an analytical solution for this problem us-
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FLUID FLOW

Figure 1. a) planar channel with non-parallel walls, b) non-planar
channel with parallel walls.

ing a general governing equation based on the principle of
mass conservation and the assumption that CL is locally es-
tablished. In this solution, the fracture walls should be des-
cribed by an explicit function f{x). For the fracture illus-
trated in Figure la, the top surface of the fracture can be
described mathematically using Fourier series (Equa-
tion 18).

f(x)=a2°+g(an coszznxj (18)

where g, and a, are Fourier coefficients and can be found
from the following equation.

an =
(nm)*

(2 cosnm—cos 2nm—1)
(19)

2 b
and a, :ZI" f()dx

where b and h are geometrical characteristic of the top frac-
ture wall as defined in Figure 1a.

All parameters are shown on Figure 1a. Based on Ge
(1997)’s solution, true aperture at a given x in the direction
of the flow can be defined as follows:

m(x) =C(x)d, =C(x) f(x) (20)
2 cos(ax))
Clx)= 21
=) cos(*“)(1+ cos((au(x))) 1)
a(x) =tan”" (f'(x)) (22)

where a.(x) is the slope of the top surface, d, is apparent ap-
erture (distance between top and bottom surfaces for a
given x), m(x) is true aperture for a given x and f* is deriva-
tive of f. Zimmerman et al. (1991) show that the Reynolds
equation can lead to the following expression for the hy-
draulic aperture:
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(23)

J*xz dx :|1

p— { :

X, =X, rm(x)”

The above equation gives the appropriate hydraulic
aperture for estimating flow rate by the cubic law. In this
study, LBM was applied for simulation of the flow in the
same problem. For this purpose, a domain including a
300 x 40 lattices with spacing 4 = 0.0002 cm and dimen-
sionless relaxation parameter T = 0.65 was considered.
Pressure boundaries were applied at both downstream and
upstream sides of the channel and no-slip boundary condi-
tion was assumed at the left and right of the domain to
model the rigid walls.

The results of numerical simulations as well as flow
rates obtained by CL by application of hydraulic aperture
(d,) are presented in Figure 2a. The numerical results are in
good agreement with the analytical solution for different
sizes of surface zigzags. Both results show that the volu-
metric flow rates increase with the decreases of h/d,. Also,
as shown in Figure 2b, where the size of zigzags on top wall
is the same for all analyses, both analytical solution and LB
results imply that flow rates do not follow the CL in which
the flow rate is a function of the cube of the average channel
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Figure 2. Comparison between flow rate obtained by numerical

results and Ge’s (1997) solution: a) different sizes of surface zig-
zags, b) different mean aperture.
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width d,. This deviation confirms the inaccuracy of using
average aperture for estimation of flow rate by conven-
tional CL equation.

4.2. Non-planar channel with parallel walls

Another benchmark problem considered to validate
the developed LB model is simulation of flow through
channels with non-planar walls as shown in Figure 1b. The
mathematical equation for centerline of this channel is
given by a sinusoidal function as follows:

f(x) = 8sin L’)tx (24)

where § and A are amplitude and wavelength of the channel
centerline, respectively.

Because the Reynolds equation does not account for
tortuosity, the viscous force due to tortuosity is totally ig-
nored. Consequently, this oversight can cause errors in
fracture permeability estimation and in the accuracy of the
cubic law. In an effort to examine the cubic law under a
two-dimensional fracture condition, Brown (1987) used
tortuosity factor to correct the calculated flow rate. For this
problem, the tortuosity can as shown in Equation 25.

2
(x) = 1_{27:8) cos? @
A A

1/2

(25)

Based on Equation 25, Ge (1997) obtained the fol-
lowing expression for hydraulic aperture for estimation of
volumetric flow rate by the cubic law (Equation 26).

d; :1|:J‘1 dx%:|l
A0 m(x)”

Here, analyses with different characteristics of chan-
nel centerline equation are considered. As shown in Figure
3a, the results show that the increase of the wavelength,
while the amplitude of the centerline curve remains con-
stant, increases the flow rate. The rate of increase is consid-
erable for lower values of wave lengths. The sensitivity of
tortuosity factor to the variation of wavelength can be ob-
tained with Equation 25. In Figure 3a, comparison is also
made between LB results and analytical solution proposed
by Ge (1997) that shows relatively good agreement espe-
cially for lower values of wavelengths.

(26)

Figure 3b presents the variation of flow rate with am-
plitude of channel centerline for a case with constant wave-
length. As the amplitude of the channel centerline increa-
ses, the ratio of the length of the actual path of flow to the
shortest path length in the direction of the flow (tortuosity
factor) increases that in turn decreases the rate of the flow.
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Figure 3. Comparison between flow rate obtained by numerical
results and Ge’s (1997) solution: a) different wavelengths, b) dif-
ferent amplitudes.

5. Simulation of flow through natural
fractures

5.1 Fracture tortuosity

One of the main differences between natural fractures
and straight channels is tortuosity. Common definition of
tortuosity is the ratio of the length of the fracture centerline
to the shortest path length in the direction of the flow.
Therefore, tortuosity is equal to unity for straight channels
and has larger values for natural fractures. Also, other defi-
nitions have also been proposed for tortuosity factor such as
those by Zhang & Nagy (2004) and Ghassemi & Pak
(2011). However, application of such definitions is mostly
limited to researches. Herein, the traditional definition of
tortuosity is applied for evaluation of fracture tortuosity.

The results of numerical analyses conducted by chan-
ging amplitude and wavelength of a sinusoidal fracture
while other parameters were constant are shown in Figu-
re 4. As shown in the figure, for all simulations volumetric
flow rate is inversely proportional with tortuosity factor. It
should be noted that the tortuosity of flow in natural 3D
fractures is affected by the complexity of the velocity field
induced by factors such as small and/or large scale rough-
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Figure 4. Variation of flow rate with tortuosity factor.

ness, out-of-plane tortuous flow paths and the change of
flow direction (Cook, 1992, Oron & Berkowitz, 1998;
Wang et al., 2015). These factors are not fully captured by
the simple conventional definition of tortuosity. For exam-
ple, conventional definition of tortuosity only accounts for
the curvature of the fracture centerline, but it is insensitive
to the form of curvature which governs the change of flow
path direction. As shown in Figure 5, the curve of the larg-
est half-circle has the same length as the curve composed of
a series of smaller half-circles. However, the results of nu-
merical simulation of flow through channels with equal
length but different number of half-circles indicate that the
maximum effect of number of half-circles on the flow rate
is less than 5 %.

5.2 Throats and surface roughness

Even through a fracture with straight centerline where
tortuosity factor is unity, abrupt constrictions of channel
walls as well as surface roughness can significantly affect
the rate of flow. Herein, a series of analyses in channels
with different height (%), length (b) and number of throats
was considered (see Figure 6). Furthermore, surface rough-
ness was also investigated by modeling a channel including

(>
-l

>
-l

Figure 5. Curves with the same length but different number of

half-circles.
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FLUID FLOW

Figure 6. Throat in a channel with straight centerline.

regular subsequent constrictions with low values of h/d,.
As mentioned in Section 2, a couple of relationships for hy-
draulic aperture have been proposed to be applied in the
well-known cubic law for more accurate estimation of flow
rate through single fracture. Some of these definitions were
examined by the results of LB numerical simulations as
shown in Figure 7.

Figures 7a and 7b indicate the variation of the volu-
metric flow rate over arithmetic and geometrical mean of
the channel width along the centerline of the fracture. As
can be seen in these figures, although applying geometrical
mean of fracture width decrease the scatter of the results,
for both methods distinct linear trends are observed for
each group of analyses. It should be noted that the appropri-
ateness of meaning method can be related to the form of
fracture centerline. For example, use of the geometric mean
for isotropically correlated apertures with a lognormal dis-
tribution will result in obtaining reasonably flow rates us-
ing cubic law (Konzuk & Kueper, 2004).

Similar pattern was obtained by using the correction
factor (Cr) proposed by Zimmerman & Bodvarsson (1996)
as shown in Figure 7c. However, a relatively well-fitted lin-
ear trend can be found in Figure 8a where for all numerical
simulations, the results are presented in the form of effec-
tive width as defined by Akhavan et al. (2012).

Among the results presented in this figure, some data
were extracted from analyses of flow through channels
without any variation in width but with rough walls (by
considering several constrictions with low values of //d ).
From Figure 8a, it can be found that the slope of linear trend
for these set of data (shown with non-filled symbols) is
fairly different from other results shown in the figure. In
this study, in order to enhance the convergence of the re-
sults to the linear trend, some of different reduction factors
proposed in the literature to be applied to the cube law to ac-
count for the effects of wall roughness were examined. The
outcome implies that modification factor, as defined in
Equation 6, gives the best correlation for the conducted
analyses. Comparison of Figures 8a and 8b confirms that
higher R-squared value can be reached if reduction factor
proposed by Louis (1969) is applied to the cube of effective
width.
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5.3 Randomly generated fractures

Single fractures in geo-materials such as rock mass or
concrete always contain tortuous flow paths with variable
aperture and rough wall surfaces. In previous parts of this
paper, different important geometrical parameters influ-
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encing flow through channels such as tortuosity factor, av-
erage width and wall roughness were investigated by the
developed LB numerical model independently. Herein, at-
tempt is made to study the effects of these parameters on
flow through fractures with more realistic geometrical
characteristics.

There are various methods to construct a synthetic
fracture with rough wall surfaces such as the successive
random addition method, the randomization of the Weiers-
trass function based on Mandelbrot, and the Fourier trans-
formation (Dou & Zhou, 2014). In this study, a random
generation process similar the approach used by Yang
(2014) was applied to provide fractures with irregular ge-
ometries to be used in the fluid flow analyses. In this proce-
dure, the shape of the centerline is defined as a backbone
for the fracture. Also, it is assumed that the fracture walls
have a zigzag shape and the total numbers of zigzags are de-
fined.

A certain number of random numbers are generated
and they are assigned as slopes for those zigzag lines. A
scale factor is used to adjust the slopes, if necessary. An-
other set of random numbers were generated (between 0.5
and 1) for fracture widths. These random numbers are mul-
tiplied with appropriate width factor to get the desired frac-

0.0014

= single throat-different width
0.0012 « single throat-different length &
A multiple Throats -
0.001 ® without throat-different wall Roughness
p—
Q 0.0008
NE R?=0.9826
0.0006
0.0004
0.0002
(a)
0
[} 2 4 6 8 10 12 14
3 3
d> ¢ [M°]
0.0014
m single throat- different width
0.0012 o single throat-different length
A Multiple Throats
0.001 ® without throat - different wall Roughness
W 0.0008
~ -
NE R2=10.9872
0.0006
0.0004
0.0002 |
(b)
0

o 0.0000001 0.0000002 0.0000003

@3, x 1/ Flm?]

0.0000004 0.0000005 0.0000006

Figure 8. Variation of the volumetric flow rate over a) effective
width as defined by Akhavan et al. (2012), b) modified effective
width using the reduction factor by Louis (1969).
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ture width at a given point on the zigzag line. Hence
numbers of zigzag lines, width factor and scale factor are
the parameters that can be controlled in the process of gen-
eration of the fracture. The mentioned procedure was ap-
plied to a MATLAB code to generate fractures with
random wall geometries which are the boundary conditions
for the fluid flow analyses by LB model. A representative
illustration of some of the generated fractures by the men-
tioned procedure is shown in Figure 9.

Several flow simulations through generated fractures
with different geometrical properties are conducted to ex-
amine the validity of cubic law for estimation of the flow
rate using different definition of hydraulic aperture. For
comparison, the results of flow rate for these analyses are
presented in terms of arithmetic mean, geometrical mean
and effective width in Figures 10a, b and c, respectively.
These figures indicate that application of the effective
width in the cubic law can significantly improve the R-
squared value of the obtained data. Therefore, the effective
width can be evaluated as an appropriate hydraulic aperture
of the fractures for estimation of flow rate using global cu-
bic law.

6. Conclusion

In this study, Lattice Boltzmann Method (LBM) was
employed for simulation of fluid flow through channels
with grossly irregular wall geometries representing the
condition of natural fractures in the geo-materials such as
rock and concrete. The developed numerical model was
validated against analytical solutions proposed by Ge
(1997) using local cubic law approach for two fluid flow

§

Figure 9. A representative illustration of some of the randomly
generated fractures.
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Figure 10. Variation of the volumetric flow rate over a) arithmetic
average of width, b) geometrical average of width, c) effective
width for randomly generated channels.

problems through single fracture with regular geometries.
In general, the obtained results indicate that in spite of the
fact that certain physical features of real fractures cannot be
fully represented by the applied 2D model; the LBM is a
promising numerical method that can be used for estima-
tion of fluid flow through natural fractures.
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The focus of the study was evaluation of different
definition of hydraulic aperture for implication in the con-
ventional cubic law implying that the volume rate of fluid
flow across a section in a fracture is proportional to the cube
of the hydraulic aperture.

Based on the obtained results, the following conclu-
sions can be drawn:

1) Volumetric flow rate is inversely proportional with tor-
tuosity factor. Furthermore, the numerical results indi-
cate that flow rate is sensitive not only to the length of
centerline curve, but depends on its curvature varia-
tion. However, the error of mere consideration of dis-
tance ratio in the conventional definition of tortuosity
factor is not significant.

2) Even through a fracture with straight centerline (where
tortuosity factor is unity), abrupt constrictions of frac-
ture can considerably affect the rate of flow. Numeri-
cal results indicate that applying effective width in-
stead of arithmetic or geometrical average of channel
width can significantly improve the linear trend ex-
pected by the cubic law.

3) The numerical results imply that stronger correlation be-
tween the flow rate and the cube of effective width can
be reached if reduction factor proposed by Louis
(1969) is applied to the cube of effective width for
channels with rough surfaces.

4) Flow simulations through randomly generated fractures
with different geometrical properties imply that appli-
cation of the effective width can be evaluated as a
more appropriate average parameter representing the
hydraulic aperture of the fractures for estimation of
flow rate by the conventional cubic law.

More investigations are required for overcoming the
limitations of the developed numerical tool such as simula-
tion of non-Darcy flow and implication of 3D formulation
in the model. The future work of this research program is
the study of the fluid flow in natural fracture profiles using
three-dimensional model.
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