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1. Introduction

The discontinuities present in the rock masses are one 
of the main factors influencing their mechanical behavior. 
Distinct studies have aimed to estimate the shear behavior 
of the rock discontinuities, to provide parameters to analyze 
and design projects in Rock Mechanics realistically.

Several analytical models have been developed to 
represent the shear behavior of rock discontinuities. Some 
works worth mentioning are Barton (1973), Barton & 
Choubey (1977), Barton & Bandis (1990), Skinas  et  al. 
(1990), Papaliangas  et  al. (1993), Indraratna & Haque 
(2000), Indraratna  et  al. (2005, 2008, 2010, 2013), and 
Oliveira & Indraratna (2010). However, application of such 
analytical models is limited because they do not consider 
some key-factors governing the shear behavior of the rock 
discontinuities, such as the normal boundary stiffness 
imposed by the surrounding rock mass and the presence of 
infill material, or due to the difficulty in obtaining some of 
their parameters. Due to these limitations, other analysis 
methodologies have been used in Rock Mechanics, such as 

the intelligent systems that use the artificial neural networks 
(ANN), the fuzzy logic, and the neuro-fuzzy techniques to 
predict the shear behavior of the rock discontinuities (Dantas 
Neto et al., 2017; Leite et al., 2019a, b).

Besides the studies with the use of ANN have shown 
its excellent performance for predicting the shear behavior of 
rock discontinuities, some of the highlighted disadvantages, 
which can be also attributed to the analytical models, regards 
their deterministic character, i.e., the fact that they cannot 
consider the influence of the variability and uncertainties 
inherent to the input variables in their predictions. Thus, 
some systems which are developed based on the concepts 
of the fuzzy sets theory, or fuzzy logic, present themselves 
as an alternative for the development of predictive models 
that may consider the variability and uncertainties of the 
input variables in the models’ responses without requiring 
a widespread field or laboratory investigation.

The fuzzy logic proposed by Zadeh (1965) is like a 
tool designed to address subjective problems, involving 
imprecise and vague data, in addition to being able to use 
prior knowledge on such studied phenomena. Using the 
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potential of fuzzy logic, several studies have been done on 
Rock Mechanics to predict some rock mass and intact rock 
properties, such as Kayabasi  et  al. (2003), Sonmez et  al. 
(2003), and Harrison & Hudson (2010). However, results 
presented by Matos et al. (2019a, b) indicate that the fuzzy 
logic has proven somewhat satisfactory for predicting the peak 
shear strength of the rock discontinuities but has not provided 
results that help to properly represent its variation with the 
shear displacement imposed on the unfilled discontinuities.

Therefore, to use the high learning potential inherent 
in the ANN and the capacity of the fuzzy sets in considering 
the variability or uncertainties of the input parameters in the 
predictive model responses, Jang (1993) proposes a neuro-
fuzzy controller called ANFIS (Adaptive-Network-based 
Fuzzy Inference System), which is based on the construction 
of a set of fuzzy inference rules from appropriate membership 
functions, creating adjusted in-out patterns. In Rock Mechanics, 
some of the developed neuro-fuzzy systems were proposed by 
Gokceoglu et al. (2004), Singh & Singh (2006), Noorani et al. 
(2010), Jalalifar et al. (2011), and Yesiloglu-Gultekin et al. 
(2013) for modeling some properties of the rock masses and 
the intact rocks.

Matos (2018) and Matos et al. (2019a, b) proposed 
fuzzy and neuro-fuzzy models that provide predictions of 
the shear behavior of unfilled rock discontinuities. Although 
they supply satisfactory results, these models do not consider 
the effect of the infill material, which is one of the main 
factors influencing the shear behavior of rock discontinuities 
(Papaliangas et al., 1993; Haque, 1999; Indraratna et al., 2010, 
2013; Oliveira & Indraratna, 2010; Shrivastava & Rao, 2018).

In this context, the objective of this article is to present 
predictive models of dilation and shear stress of the rock 
discontinuities based on neuro-fuzzy techniques, which use the 
high capacity of the artificial neural networks in representing 
complex and multivariate phenomena, and the concepts 
inherent in the fuzzy sets, allowing for consideration of the 
variability or uncertainties of the input data in the responses 
of the proposed systems.

2. Modeling in rock mechanics with 
intelligent systems

As an alternative to existing analytical models (Barton, 
1973; Barton & Choubey, 1977; Barton & Bandis, 1990; 
Skinas  et  al., 1990; Indraratna  et  al., 2005, 2008, 2010, 
2013, 2014, 2015; Oliveira & Indraratna, 2010; etc.), and 
to facilitate the prediction process of shear behavior of the 
rock discontinuities under different boundary conditions, 
intelligent systems using artificial neural networks, fuzzy 
logic, and neuro-fuzzy techniques have been increasingly 
applied in Rock Mechanics (Jalalifar et al., 2011; Ocak & 
Seker, 2012; Yesiloglu-Gultekin et al., 2013; Dantas Neto et al., 
2017; Sadrossadat et al., 2018; Matos, 2018; Matos et al., 
2019a, b; Leite et al., 2019a, b). The choice of these systems 

is usually based on several factors which consider the high 
capacity of understanding and modeling multivariate and 
non-linear complex problems.

2.1 Fuzzy logic

Zadeh (1965) introduced the concept of fuzzy sets, the 
role of which is to represent human knowledge on a determined 
phenomenon, or problem, by treating the information vaguely 
and imprecisely. According to the author, fuzzy sets are 
represented by membership functions, in which they associate 
each element of the set to the respective degree of membership, 
whose value is between 0 and 1. Unlike the deterministic 
approach, in which a single value is attributed to a certain 
input variable in a model, the fuzzy set theory attributes to 
it a set of possible values within a given membership level 
(Zadeh, 1965; Jang et al., 1997).

The basic structure of a fuzzy inference system consists 
of three conceptual components: a set of rules, representing 
the relations between the fuzzy sets; a database, which defines 
all membership functions used in the fuzzy rules; and a 
reasoning process, that executes the inference procedure over 
the fuzzy rules, producing a response or output. There are 
different types of fuzzy inference systems, the best-known 
being those proposed by Mamdani (1974), Tsukamoto (1979), 
and Takagi & Sugeno (1983).

Harrison & Hudson (2010) states that mathematics present 
in fuzzy logic can be a proper tool to solve Rock Mechanics 
problems, bearing in mind that it allows consideration of the 
uncertainties present in the rock masses and their structures. 
Using fuzzy logic features, some studies such as those presented 
by Sonmez et al. (2003), Kayabasi et al. (2003) have used 
the logic fuzzy to predict properties in the rock masses.

Based on a fuzzy inference system of the Mamdani 
(1974) type, Sonmez et al. (2003) estimated several parameters 
necessary for characterizing rock mass using the Geological 
Strength Index (GSI). The authors concluded that the fuzzy 
sets provide a more practical way of working with cases in 
which the data are limited and uncertain.

Kayabasi et al. (2003) estimated the rock mass deformation 
modulus based on simple regressions, multiple regressions, 
and a Mamdani (1974) fuzzy inference system. The authors’ 
results show that the predictions made by the fuzzy system 
were more reliable compared to the experimental data.

Matos (2018) and Matos et al. (2019a, b) used the Mamdani 
(1974) and Takagi & Sugeno (1983) type fuzzy models for 
predicting the shear behavior of unfilled rock discontinuities. 
Based on the authors’ results, it was found that first-order 
Takagi & Sugeno (1983) models were those that performed 
best in dilation and shear stress estimations, comparing the 
output data of these systems with the experimental data used. 
Besides, their results have shown good performance only to 
predict the peak shear stress.

According to the aforementioned works, it is possible 
to observe the difficulty of choosing the suitable membership 
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functions for each input variable considered in any modeled 
phenomenon remains the main limitation of fuzzy logic 
systems. Besides, the higher the number of input variables 
the higher the computational effort necessary to perform the 
inference procedures during the modeling process.

2.2 Artificial Neural Networks (ANN)

Haykin (2008) defines an artificial neural network as 
a mechanism formed by processors distributed in parallel 
layers, consisting of processing units that are called artificial 
neurons, having the natural tendency to store knowledge and 
make it available for use. One of the main types of ANN 
used in engineering is the multilayer perceptron, which is 
a feed-forward neural network formed typically of three 
types of layers: the input layer, whose main function is to 
receive the external “stimulus”; the hidden layers, responsible 
for extracting more complex statistics from the modeled 
mechanism; and the output layer, which provides the results 
of the modeled phenomenon by the ANN (Haykin, 2008).

An artificial neural network is trained by alterations in 
their synaptic weights and biases, using a specific learning 
algorithm and the knowledge about the existing modeled 
phenomenon in a set of experimental data containing known 
input-output patterns. After the training phase, the performance 
of the neuronal model is checked at a phase called testing, 
using a set of input-output values that was not presented to 
the network during the alteration of synaptic weights and 
biases. In general, in the process of defining a neuronal 
model, various architectures are trained and tested until 
identifying a configuration that has the best performance in 
predicting the responses during the training phase, and which 
demonstrates a satisfactory capacity to generalize knowledge 
of the phenomenon modeled by the neuronal network during 
testing (Haykin, 2008; Dantas Neto et al., 2017).

The functionalities and high learning capacity of the 
ANN have led to the development of various studies in 
Rock Mechanics, for example, by Sonmez  et  al. (2016), 
Dehghan et al. (2010), Ocak & Seker (2012), Dantas Neto et al. 
(2016, 2017), Leite et al. (2019a, b) and others.

Dehghan et al. (2010) used regressions and neuronal 
models to predict the uniaxial compressive strength and the 
elastic modulus in samples of the rock mass. The authors 
concluded that the results of the models developed with ANN 
were closer to the experimental data used, emphasizing the 
capacity of those systems to represent the nonlinear aspects 
of the phenomena studied.

Dantas Neto et al. (2016, 2017) produced a model that 
uses ANN to predict dilation and shear stress found in unfilled 
discontinuities. Considering the main factor influencing 
the shear behavior of rock discontinuities, the model gave 
satisfactory results when compared to the experimental data 
used in their development, as well as allowing the user faster 
and more practical calculations of the estimations.

Dantas Neto et al. (2017) and Leite et al. (2019a, b) 
also proposed predicting models for the shear behavior of 
unfilled and infilled rock discontinuities under constant 
normal stiffness (CNS) and constant normal loading (CNL) 
conditions with multilayer perceptrons. It can be observed 
that these neuronal models have provided results closer to 
the experimental data than the estimations obtained from 
applying different analytical models used by the authors, 
showing the capacity of the ANN to predict the shear behavior 
of rock discontinuities.

2.3 Neuro-fuzzy systems

Jang et al. (1997) mention that the modeling process of 
a neuro-fuzzy problem is based on two segments: the artificial 
neural network, which recognizes patterns to adapt to the 
change in their medium, and the fuzzy inference system, 
which allows the incorporation of human knowledge and 
perform a role of inference and decision-making about a 
specific problem. Jang (1993) proposed a class of ANN 
that are functionally equivalent to a fuzzy inference system 
known as the Adaptive Network-based Fuzzy Inference 
System (ANFIS). Figure 1 illustrates an ANFIS model made 
up of two fuzzy inference rules, based on the concepts of 
the fuzzy inference system of the Takagi & Sugeno (1983) 
type for representing a specific phenomenon.

Jang (1993) differentiates each layer shown in 
Figure  1 according to its functions. The nodes in Layer 
1 are not adaptable and the values of its nodes are defined 
according to Equation 1, where x and y are the input in the 
nodes, and Ai, or Bi, are the fuzzy sets associated with the 
nodes. In this example, “i” depicts the value of 1 and 2 in 
virtue of the number of fuzzy inference rules and sets used. 
Each output ( 1,iO ) of Layer 1 is the value of the degree 
of membership obtained from x and y, calculated by any 
preestablished membership function.

( ) ( )1, 1,      ,  1, 2
i ii iA x B yO ouO iµ µ= = = 	 (1)

Layer 2 is made up of fixed nodes, which function is 
to calculate the product of the input signals, according to 

Figure 1. Diagram of an ANFIS neuro-fuzzy model (Jang, 1993).
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Equation 2. Each output of this layer represents the weight 
of its fuzzy inference rule.

( ) ( )2,    .  ,  1, 2
i ii i A x B yO w iµ µ= = = 	 (2)

The nodes in Layer 3 are also fixed and they calculate 
the ratio between the weight of each fuzzy rule and the sum 
of the weights of all fuzzy rules according to Equation 3.

3,
1 2

    ,  1, 2i
i i

w
O w i

w w
= = =

+
	 (3)

Layer 4 contains adaptable nodes that have outputs 
computed according to Equation 4, in which iw  is the output 
from Layer 3 and ip , iq , and ir  are referred to as consequent 
parameters.

( )4,     i i i i i i iO w z w p x q y r= = + + 	 (4)

Finally, Layer 5 is characterized by a single fixed node, 
whose function is to calculate the output (z) of the neuro-
fuzzy system by summing all its input signals together, 
according to Equation 5.

5,  i i i
i

O z w z= =∑ 	 (5)

Jang (1993) points out that when the premise parameters 
are fixed, the output (z) of the neuro-fuzzy system can be 
expressed through a linear combination of the consequent 
parameters, as presented in Equation 6.

1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )z w x p w y q w r w x p w y q w r= + + + + + 	(6)

The linear combination represented in Equation 6 allows 
the hybrid learning process proposed by Jang (1993). This 
process consists of two phases: the forward phase, when the 
outputs proceed to Layer 4, the consequent parameters being 
calculated by the least-squares method; and the backward phase 
when the error sign is defined by the difference between the 
output calculated by the ANFIS system and the experimental 
data spreads through the system and the premise parameters 
are calculated by the gradient descent method (Jang, 1993; 
Jang et al., 1997). Thus, the ANFIS neuro-fuzzy system tends 
to move closer to the desired response pattern, comprising 
the problem under analysis with the modification of the 
parameters inherent to the membership functions, which 
result in the development of optimized fuzzy sets.

In the training process of the ANFIS neuro-fuzzy 
systems, an initial structure is required with fuzzy sets and 
established membership functions. Jang et al. (1997) point to 
various methodologies that can be used in developing these 
initial structures, such as the grid partitioning method and 
the subtractive clustering technique. The grid partitioning 
method is based on dividing the input variables domain 
in equally spaced sizes from membership functions of the 
same format. In the case of the subtractive clustering method 
proposed by Chiu (1994), the clustering centers are created 
according to the distribution of the input data in the variable 
domains based on the concept of data density, which creates 
the number of membership functions necessary to represent 
the problem under analysis.

Neuro-fuzzy systems have been used in several 
Rock Mechanics applications, such as those presented by 
Gokceoglu et al. (2004), Singh & Singh (2006), Noorani et al. 
(2010), Jalalifar et al. (2011), Yesiloglu-Gultekin et al. (2013), 
Sadrossadat et al. (2018), Matos (2018).

Gokceoglu  et  al. (2004) used a neuro-fuzzy model 
to estimate the rock mass deformation modulus. From the 
study, it was noticeable that the results from the developed 
neuro-fuzzy system were closer to the experimental data 
than the predictions made by the empirical models used by 
the authors.

Singh & Singh (2006), in turn, developed neuro-fuzzy 
models and ANN to predict the Poisson’s ratio and Young’s 
modulus of intact rocks. The authors used as input variables 
in their models the property of intact rock, as the uniaxial 
compressive strength and tensile strength. Comparing the 
results from the developed models, the neuro-fuzzy system 
provided estimations closer to the experimental data.

Matos (2018) used ANFIS systems to predict the 
shear behavior of unfilled rock discontinuities submitted 
to CNS and CNL conditions. The models gave satisfactory 
results when compared to the experimental data used in their 
development. Despite the results, the neuro-fuzzy systems 
developed by these authors do not consider the presence of 
the fill material in the shear behavior of rock discontinuities 
restricting their use only to certain field situations.

3. Development of neuro-fuzzy models

3.1 Experimental data

Experimental data were obtained from 116 large-scale 
direct shear tests undertaken by Benmokrane & Ballivy 
(1989), Skinas  et  al. (1990), Papaliangas  et  al. (1993), 
Haque (1999), Indraratna & Haque (2000), Oliveira et al. 
(2009), Indraratna et al. (2010), Mehrishal et al. (2016) and 
Shrivastava & Rao (2018). This survey results in a set of data 
with 2098 input-output patterns to be used in developing and 
evaluating the neuro-fuzzy models for predicting dilation 
and shear stress of rock discontinuities. Different conditions 
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for the rock discontinuities can be observed for the data 
available in the used dataset in terms of uniaxial compressive 
strength (soft to hard rocks), roughness profile (slightly to 
very rough), external boundary conditions (CNL and CNS), 
condition of infill (unfilled and infilled rock discontinuities), 
which show the wide variety of situations considered in the 
experimental data used in developing the proposed models. 
In direct shear tests carried out on CNL condition, the normal 
stress is constant during shearing, while in CNS conditions

3.2 Defining the input and output variables

The input variables of the neuro-fuzzy models were 
defined to take into consideration the main factors governing 
the shear behavior of rock discontinuities represented by the 
dilation (δv), in mm, and shear stress (τs), in MPa, during the 
shear process. They are:

•	 Normal boundary stiffness (kn), in kPa/mm;
•	 Ratio of thickness of the infill material (t) to asperity 

height of the discontinuity (a) - t/a ratio;
•	 Initial normal stress (σno), in MPa;
•	 Joint roughness coefficient (JRC);
•	 Uniaxial compressive strength of intact rock (σc), 

in MPa;
•	 Basic friction angle of intact rock (ϕb), in degrees;
•	 Friction angle of infill material (ϕinfill), in degrees;
•	 Shear displacement (δh), in mm.

The maximum and minimum values of the collected 
experimental data for the defined input and output variables 
are presented in Table 1. These values must be considered as 
the limits to which the models can be applied since they were 
used to establish the membership functions of the variables 
involved and to define the fuzzy inference rules.

3.3 Training of neuro-fuzzy models

The ANFIS models developed are based on the principles 
of the fuzzy inference systems of Takagi & Sugeno (1983) 
and the hybrid learning proposed by Jang (1993). The ANFIS 
systems for predicting the parameters that define the shear 
behavior of rock discontinuities were modeled first by neuro-
fuzzy model training, in which 80% of the experimental 
data was randomly chosen from the available experimental. 
The remaining data (20%) were used later in the test phase 
of the developed models.

Concerning the initial structure, input variables, and 
membership functions adopted, different configurations were 
tested for the following neuro-fuzzy models:

•	 Model 1: created by the grid partitioning method, 
presenting two (2) Gaussian membership functions 
for the eight input variables;

•	 Model 2: created by the grid partitioning method, 
presenting three (3) Gaussian membership functions 
for the input variable t/a, and two (2) Gaussian 
membership functions for the remaining variables;

•	 Model 3: created by the grid partitioning method, 
presenting three (3) Gaussian membership functions 
for the input variables t/a and δh, and two (2) Gaussian 
membership functions for the remaining variables;

•	 Model 4: created by the grid partitioning method, 
presenting three (3) Gaussian membership functions 
for input variables t/a, δh, kn and σc, and two (2) 
Gaussian membership functions for the remaining 
variables;

•	 Model 5: created by the subtractive clustering method, 
in which the number of Gaussian membership 
functions is obtained for each model itself;

•	 Model 6: variable ϕb is not considered as an input 
variable in the model, the initial structure is created 
using the grid partitioning method, presenting two 
(2) Gaussian membership functions for all remaining 
input variables;

•	 Model 7: variable ϕb is not considered as an input 
variable in the model, the initial structure is considered 
using the grid partitioning method, presenting three 
(3) Gaussian membership functions for the input 
variables t/a and δh, and two (2) Gaussian membership 
functions for the remaining input variables;

•	 Model 8: variables ϕb and ϕinfill are not considered as 
input variables in the model, the initial structure is 
created using the grid partitioning method, presenting 
two (2) Gaussian membership functions for the other 
input variables;

•	 Model 9: variables ϕb and ϕinfill are not considered as 
input variables in the model, the initial structure is 
created using the grid partitioning method, presenting 
three (3) Gaussian membership functions for the 
input variables t/a and δh, and two (2) Gaussian 
membership functions for the remaining variables.

Table 2 summarizes the main configurations established 
for the different neuro-fuzzy models evaluated in this paper 

Table 1. Maximum and minimum values of the models’ variables.
Input variables Output variables

nk t/a 0nσ JRC cσ bφ fillφ hδ vδ τ
kPa/mm MPa MPa degrees degrees mm mm MPa

0 0 0.05 2 3.5 30 0 0.02 -2.43 0.02
7515 2 46.5 20 150 37.5 35.5 26 4.97 6.68
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in an attempt to find out the model which presents the best 
performance in the shear behavior of the rock discontinuities. 
The grid partitioning method was used in all ANFIS models 
tested except for Model 5, in which the subtractive clustering 
partitioning was used to evaluate the performance of the 
ANFIS model when its training process is influenced by the 
distribution of the input data, as described in section 2.3. 
In this case, the number of membership functions is created 
according to the distribution of the input data values used 
in the modeling and not arbitrarily chosen by the expert. 
Then, it was tested whether the definition of the number 
of membership functions according to the distribution of 
available input data could improve the performance of the 
ANFIS models rather than the use of grid partitioning method.

With definition of such structures, one of the aims is to 
assess the influence of the input variables in the performance 
of the proposed neuro-fuzzy models. The choice of Gaussian 
membership functions in establishing the fuzzy sets representing 
the input variables was based on the satisfactory results from 
the various studies that adopted this function (Singh & Singh, 
2006; Jalalifar et al., 2011).

The software used to develop ANFIS neuro-fuzzy 
models was MATLAB (Jalalifar  et  al., 2011; Yesiloglu-
Gultekin et al., 2013). At the training phase, the different 
ANFIS models were developed by comparing the results 
obtained for each output variable (dilation or shear stress) 
with the experimental data, so that the parameters were created 
to form the membership functions and fuzzy inference rules 
to obtain the best performing neuro-fuzzy system possible.

3.4 Criteria for model selection and model validation

The selection criterion of the ANFIS systems was 
based on the comparison between the predictions made by 
the tested models and the experimental data used during 
the test phase by using the coefficient of determination (R2). 
The neuro-fuzzy models that had R2 values in the test phase 
higher than 0.95 were considered apt to be assessed at a later 
stage called the validation phase.

The validation phase consisted of predicting the shear 
stress and dilation of hypothetical rock discontinuities similar 
to the methodology used by Dantas Neto et al. (2017) to 
validate ANN models for predicting the shear behavior 
of unfilled rock discontinuities. This procedure allows 
checking whether the neuro-fuzzy models can represent 
satisfactorily the influence of the input variables on shear 
behavior of such discontinuities (Indraratna  et  al., 2014, 
2015; Oliveira et al., 2009; Barton, 2013, 2016; Naghadehi, 
2015; Shrivastava et al., 2011).

4. Results and discussions

4.1 ANFIS model training and testing

Tables 2-4 provide the values of the coefficients of 
determination (R2) obtained during the training and testing 
phases of the neuro-fuzzy systems developed for predicting 
the dilation (D) and shear stress (S), respectively, for the 
different tested models. According to them, it is noticeable 
that the models showing the best performances are D1, 
D2, D3, and D4 for predicting dilation, and S1, S2, S3, and 
S4 for shear stress of rock discontinuities. The high R2 values 
obtained in the training and testing phases express the 
excellent performance of the ANFIS models for predicting 
shear stress and dilation under CNL and CNS condition in 
rock discontinuities for a variety of conditions in terms of 
infill and roughness. Such results can be attributed to the 
consideration of uncertainties in the values of the input 
variables in the response of neuro-fuzzy models making 
them able to satisfactorily represent the phenomenon studied

Furthermore, it is found that the systems which did not 
consider all input variables, such as models D6, D7, D8, D9, 
S6, S7, S8, and S9, had inferior performances when compared 
to the models which use all input variables. This shows how 
important is to consider all the parameters governing the shear 
behavior of the rock discontinuities in the development of 
the proposed neuro-fuzzy models.

Table 2. Configuration of studied neuro-fuzzy models.

Model Initial structure 
method Membership funcion

Number of membership functions for the considered input variables
Kn t/a σno JRC σc ϕb ϕfill δh

1 Grid partitioning Gaussian 2 2 2 2 2 2 2 2
2 Grid partitioning Gaussian 2 3 2 2 2 2 2 2
3 Grid partitioning Gaussian 2 3 2 2 2 2 2 3
4 Grid partitioning Gaussian 3 3 2 2 3 2 2 3
5 Subtractive clustering Gaussian variable variable variable variable variable variable variable variable
6 Grid partitioning Gaussian 2 2 2 2 2 - 2 2
7 Grid partitioning Gaussian 2 3 2 2 2 - 2 3
8 Grid partitioning Gaussian 2 2 2 2 2 - - 2
9 Grid partitioning Gaussian 2 3 2 2 2 - - 3
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About the method used in the initial structure of the 
ANFIS systems, it is worth mentioning that models D5 and 
S5, developed from the subtractive clustering technique, 
presented lower R2 values than those obtained in the training 
and testing phases by models D1, D2, D3, D4, S1, S2, S3 and 
S4, which used the grid partitioning technique. This shows that 
by dividing the domain of input variables by the membership 
functions in equal sizes, it proved more efficient in predicting 
the shear behavior of rock discontinuities.

According to the results given in Tables 2-4, it is found 
that the increase in the number of membership functions 
did not correspond necessarily to an improvement in the 
performance of the ANFIS models. This can be confirmed 
by comparing the R2 values obtained in the test phase in the 
D2 and D4, and S2 and S4 systems, when there was a drop in 
the coefficients of determination even with the increase in the 
number of membership functions for more input variables.

4.2 Validation of neuro-fuzzy models

Neuro-fuzzy models used in the validation phase were 
D1, D2, D3, and D4 to predict dilation, and S1, S2, S3, and 
S4, to predict the shear stress.

The hypothetical rock discontinuities used to validate the 
neuro-fuzzy models have the same characteristics considered 
by Dantas Neto  et  al. (2017) and Leite  et  al. (2019a, b). 
Therefore, for the hypothetical unfilled rock discontinuities 
the following parameters were considered: JRC = 5; σc = 

12 MPa e ϕb = 37.5°. For hypothetical infilled discontinuities, 
it was considered that the shear strength of the infill material 
is characterized by a friction angle (ϕinfill) of 35.5°.

The models with the best results in predicting the 
shear behavior of the hypothetical discontinuities were the 
ANFIS D1 and S2 systems, as shown in Figures 2-5 and in 
Figures 6-9 for dilation and shear stress results, respectively.

According to the results presented between Figure 2 and 
Figure  5, it is observed that the ANFIS D1 model can 
satisfactorily represent the drop in dilation in the hypothetical 
rock discontinuity with the increase in normal boundary 
stiffness (kn), initial normal stress (σno), and the t/a ratio. 
In addition, higher dilation values have been obtained with 
the increased roughness in the discontinuity, represented by 
the JRC value. Such results can be considered satisfactory 
to the extent that they express the trends seen in different 
studies (Indraratna & Haque, 2000; Indraratna et al., 2005, 
2008, 2010, 2013, 2014, 2015; Oliveira et al., 2009; Oliveira 
& Indraratna, 2010; Barton, 2013, 2016; Naghadehi, 2015; 
Shrivastava et al., 2011; Shrivastava & Rao, 2018).

Figures 6-9 show the results obtained with the S2 neuro-
fuzzy model considering the input variables of the hypothetical 
rock discontinuities. These results show that the S2 model 
is capable to express the increase of shear stress values with 
the normal boundary stiffness (Figure 6), initial normal stress 
(Figure 7), and roughness (Figure 9). It is also possible to 
observe its ability to represent the drop in shear stress with 
the increase in t/a ratio (Figure 8), and also due to the asperity 

Table 4. Results obtained in the training and test phases of the shear stress prediction systems.
Model Input variables Initial structure Membership functions R2 test R2 training

S1 8 Grid partitioning 2 0.96 0.97
S2 8 Grid partitioning 2, except t/a (3) 0.96 0.97
S3 8 Grid partitioning 2, except t/a and hδ  (3) 0.97 0.98
S4 8 Grid partitioning 2, except t/a,  hδ , nk  and cσ  (3) 0.95 0.98
S5 8 Subtractive clustering 14 0.92 0.93
S6 7 Grid partitioning 2 0.10 0.28
S7 7 Grid partitioning 2, except t/a and hδ  (3) 0.37 0.50
S8 6 Grid partitioning 2 0.00 0.00
S9 6 Grid partitioning 2, except t/a and hδ  (3) 0.04 0.06

Table 3. Results in the training and test phases of the dilation prediction systems.
Model Input variables Initial structure Membership functions R2 test R2 training

D1 8 Grid partitioning 2 0.99 0.99
D2 8 Grid partitioning 2, except t/a (3) 0.99 0.99
D3 8 Grid partitioning 2, except t/a and hδ  (3) 0.98 0.99
D4 8 Grid partitioning 2, except t/a,  hδ , nk  and cσ  (3) 0.98 0.99
D5 8 Subtractive clustering 14 0.92 0.90
D6 7 Grid partitioning 2 0.00 0.01
D7 7 Grid partitioning 2, except t/a and hδ  (3) 0.14 0.25
D8 6 Grid partitioning 2 0.00 0.01
D9 6 Grid partitioning 2, except t/a and hδ  (3) 0.01 0.02
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damage occurring in rock discontinuities with high JRC 
values under CNS condition (Figure 9), similarly to what is 
expected when analyzing the influence of the input variables 
on the shear stress (Skinas et al., 1990; Papaliangas et al., 
1993; Indraratna et al., 2015; Shrivastava & Rao, 2018).

5.3 Neuro-fuzzy models for predicting shear behavior 
of rock discontinuities

As shown and discussed previously, the neuro-fuzzy 
models referred to as D1 and S2 presented the best performances 

Figure 2. Effect of normal boundary stiffness on the dilation 
( noσ  = 0.5 MPa).

Figure 3. Effect of initial normal stress on the dilation ( nk  = 0 kPa/mm).

Figure 4. Effect of join|t roughness on the dilation ( nk  = 560 kPa/mm 
and noσ  = 0.5 MPa).

Figure 5. Effect of infill on the dilation (  = 425 kPa/mm and 
0nσ  = 0.3 MPa).

Figure 6. Effect of normal boundary stiffness on the shear stress 
( noσ  = 0.5 MPa).

Figure 7. Effect of initial normal stress on the shear stress 
( nk  = 0 kPa/mm).

Figure 8. Effect of infill on the shear stress ( nk  = 425 kPa/mm and 
0nσ  = 0.6 MPa).

Figure 9. Effect of joint roughness on the shear stress ( nk  = 560 kPa/mm 
and noσ  = 0.5 MPa).
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regarding the tests on experimental and hypothetical 
discontinuities, and were, therefore, chosen to predict the 
dilation and shear stress, respectively. It is worth mentioning 
the large number of the 2098 input-output patterns used in the 
concept and analysis of such models which consider different 
boundary conditions referring to the rock discontinuities, 
being developed from the grid partitioning technique using 
80% of the experimental data for the training phase, and 
20% for the testing phase.

Model D1 consists of two (2) Gaussian membership 
functions for the eight (8) input variables that represent 
the main governing factors of the shear behavior of rock 
discontinuities, thereby creating 256 fuzzy inference rules. 
In the case of system S2, it presents 384 fuzzy inference rules, 
referring to the three (3) Gaussian membership functions for 
the t/a variable and two (2) Gaussian membership functions 
for the remaining input variables. In this context, dilation 
and shear stress are calculated by the respective fuzzy 
inference rules used in the models, when attributing input 
data that are within the intervals comprised by the established 
membership functions.

Figures 10-11 show the comparison of results obtained 
by applying the proposed D1 and S2 ANFIS models, those 
from the neuronal model proposed by Dantas Neto et al. 
(2017) to predict the dilation and shear stress, respectively, and 
the experimental data presented by Papaliangas et al. (1993) 
for an unfilled soft rock discontinuity under CNL condition, 
and σno = 0.05 MPa, JRC = 12, σc = 3.5 MPa and ϕb = 30°.

Figure  10 shows that both the ANFIS model (D1) 
and the neuronal model proposed by Dantas Neto  et  al. 
(2017) satisfactorily represented the variation of dilation 
with shear displacement. However, the results presented in 
Figure 11 show that the shear stress estimations provided 
by the ANFIS S2 system were closer to the experimental 
data than those calculated by the ANN proposed by Dantas 
Neto  et  al. (2017). Its main limitation is the fact that it 
failed to represent the variation of shear stress with shear 
displacement in very soft rock discontinuities and submitted 
to low initial normal stress values, as already commented 
by the Dantas Neto et al. (2017).

Figures  12-13 show the comparison between the 
predictions from the proposed ANFIS systems, the neuronal 
model developed by Dantas Neto et  al. (2017), and the 
experimental data presented by Benmokrane & Ballivy 
(1989), referring to unfilled hard rock discontinuity with 
the following characteristics and boundary conditions: 
σno = 1 MPa; JRC = 14; σc = 90 MPa; ϕb = 35°; and 
kn = 315 kPa/mm (CNS condition). According to these 
results, both D1 and S2 ANFIS models fitted satisfactorily 
the experimental data regarding the variation in dilation 
(Figure  12) and shear stress (Figure  13) with the shear 
displacement, expressing the good performance of those 
neuro-fuzzy models in also estimating the shear behavior 
of hard rock discontinuities.

Figure 10. Comparison of experimental data for dilation of soft 
rocks and results from the D1 ANFIS model and the ANN model 
proposed by Dantas Neto et al. (2017).

Figure 11. Comparison of experimental data for shear stress of soft 
rocks and results from the S2 ANFIS model and the ANN model 
proposed by Dantas Neto et al. (2017).

Figure 12. Comparison of experimental data for dilation of hard 
rocks and results from the D1 ANFIS model and the ANN model 
proposed by Dantas Neto et al. (2017).

Figure 13. Comparison of experimental data for shear stress of 
hard rocks and results from the S2 ANFIS model and the ANN 
model proposed by Dantas Neto et al. (2017).
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5. Conclusions

Assessing the various neuro-fuzzy models developed 
in this study for the predictions of dilation and shear stress 
in filled and unfilled rock discontinuities, the D1 and 
S2 systems presented the best performances considering the 
tests and analyses made in experimental and hypothetical 
rock discontinuities. Such systems were designed based on 
the grid partitioning technique, which presented better results 
than the subtractive clustering technique, with 80% of the 
experimental data used for the training phase, the remaining 
20% being used for the testing phase.

The input variables used in the developed neuro-fuzzy 
systems were the normal boundary stiffness (kn), in kPa/mm; 
the ratio between the infill thickness and height of asperity 
(t/a); initial normal stress (σno), in MPa; joint roughness 
coefficient (JRC); uniaxial compressive strength of intact 
rock (σc), in MPa; basic friction angle of intact rock (ϕb), 
in degrees; friction angle of fill material (ϕinfill), in degrees, 
and shear displacement (δh), in mm. Hence, the aim was to 
use the main governing factors of the shear behavior of the 
filled and unfilled rock discontinuities,

The model for predicting dilation (D1) consists of two 
(2) Gaussian membership functions for all input variables 
corresponding to a total of 256 fuzzy inference rules. 
Its coefficients of determination (R2) were 0.99 in both training 
and testing phases indicating a satisfactory correlation between 
the experimental data and results obtained by the proposed 
neuro-fuzzy system. The neuro-fuzzy system developed 
for predicting the shear stress of rock discontinuities (S2) 
presents coefficients of determination of 0.97 and 0.96 in the 
training and testing phases, respectively, which also show the 
proximity between the estimations and the experimental data.

Using D1 and S2 ANFIS models to estimate dilation 
and the shear stress considering several characteristics of 
hypothetical infilled and unfilled rock discontinuities, it 
was possible to notice that the ANFIS systems satisfactorily 
represented the influence of the input variables on their shear 
behavior. This highlights the ability of neuro-fuzzy models 
to model multivariate, non-linear, and complex problems 
when compared to frequently used analytical models, and to 
consider the variability, or uncertainties, of the input values 
in the models’ response.

Despite the functions of the neuro-fuzzy models in 
estimating the shear behavior of the infilled and unfilled 
rock discontinuities, the use of these systems is conditioned 
and limited to the intervals attributed to their input variables 
during the modeling process. Moreover, these models did 
not yet consider other key factors that influence the shear 
behavior of the rock discontinuities, such as the drainage 
condition, saturation degree, cohesion of the fill material, 
and weathering in the rock discontinuity walls.

Lastly, the developed neuro-fuzzy systems are not 
meant to substitute tests that still need to be performed on 
samples from rock masses. Here, the ANFIS models appear 

as a potential tool for the preliminary estimation of the shear 
behavior of rock discontinuities, by attributing values to 
the input variables used, providing rapid responses to help 
toward the design’s assessment.
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List of symbols

a	 asperity height of the discontinuity
i	 depicts the value of 1 and 2 in virtue of the number of 

fuzzy inference rules and sets used
kn	 normal boundary stiffness

ip 	 consequent parameter
iq 	 consequent parameter

ir 	 consequent parameter
T	 thickness of the infill material
t/a	 relation between t and a

iw 	 output from Layer 3
x	 input in the nodes
y	 input in the nodes
z	 output of the neuro-fuzzy system
Ai	 fuzzy set associated with the nodes
Bi	 fuzzy set associated with the nodes
D	 designation for ANFIS model for dilation
D1	 designation for ANFIS model 1 for dilation
D2	 designation for ANFIS model 2 for dilation
D3	 designation for ANFIS model 3 for dilation
D4	 designation for ANFIS model 4 for dilation
D5	 designation for ANFIS model 5 for dilation
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D6	 designation for ANFIS model 6 for dilation
D7	 designation for ANFIS model 7 for dilation
D8	 designation for ANFIS model 8 for dilation
D9	 designation for ANFIS model 9 for dilation
JRC	joint roughness coefficient

1,iO 	 value of the degree of membership obtained from x and 
y

R2	 coefficient of determination
S	 designation for ANFIS model for shear stress
S1	 designation for ANFIS model 1 for shear stress
S2	 designation for ANFIS model 2 for shear stress
S3	 designation for ANFIS model 3 for shear stress
S4	 designation for ANFIS model 4 for shear stress
S5	 designation for ANFIS model 5 for shear stress
S6	 designation for ANFIS model 6 for shear stress
S7	 designation for ANFIS model 7 for shear stress
S8	 designation for ANFIS model 8 for shear stress
S9	 designation for ANFIS model 9 for shear stress
δh	 shear displacement
δv	 dilation
ϕb	 basic friction angle of intact rock
ϕinfill	 friction angle of infill material
σno	 initial normal stress
σc	 uniaxial compressive strength of intact rock
τs	 shear stress
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