
Thangavel & Samui, Soil. Rocks, São Paulo, 2022 45(4):e2022008122 1

Soils and Rocks
An International Journal of Geotechnical and Geoenvironmental Engineering

www.soilsandrocks.com

ISSN 1980-9743
ISSN-e 2675-5475

https://doi.org/10.28927/SR.2022.008122
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Determination of the size of rock fragments using RVM, GPR, 
and MPMR
Pradeep Thangavel1# , Pijush Samui1 

1. Introduction

Rock mass is a heterogeneous material, and in blasting 
and drilling, the heterogeneity of the rock generates size 
distribution of fragmented rocks. The total economics of mine 
workings are heavily reliant on the estimation of blasted rock 
mass fragmentation. The cost of loading, transport, crushing, 
and milling operations can all be reduced dramatically by using 
blasting as a major fragmentation method. Blast fragmentation is 
primarily determined by the blast design as well as the qualities 
of the rock mass (Jug et al., 2017; Mohamed et al., 2019). 
Direct and indirect approaches are used to quantify the size 
distribution of shattered rock following blasting. In the direct 
procedure, the only methodology is fragment sieving analysis. 
Despite being the most accurate approach among others, it is 
not practicable due to its high cost and time requirements. As a 
result, observational, empirical, and digital approaches have 
been created as indirect methods. Researchers can use a range 
of existing tools and models to predict and process blasting 
findings, one of which is machine learning techniques, which is 
possibly the most extensively used way to estimate fragmentation 
after blasting. There are different empirical models available for 
the determination of the size distribution of rock fragments in 
the literature (Kuznetsov, 1973; Aler et al., 1996; Ozkahraman, 

2006; Jethro et al., 2016). However, the available methods are 
not so reliable (Shi et al., 2012).

Singh et al. (2019) use dataset from forty open space bench 
explosion in the four open Indian mines to track blast-induced 
rock disintegration as a function of explosion parameters such 
as spacing, powder feature, hole size, weight, stemming depth, 
and hole bench height. Tao et al. (2020) investigated blast-
induced rock fragmentation using a combination of analytical 
modelling, finite element simulation, and image recognition. 
They used sequential alterations in the model geometry to 
investigate the major impact of rock fragility and effective 
dimensions on fragment size distribution, demonstrating that 
the effect of fracture toughness on fragmentation is included 
in the effect of material size. The deep CNN was utilised by 
Yang et al. (2021) to automatically categorise rock fragment 
images taken by a timed capture camera. Bamford et al. (2021) 
discuss the implications of using deep learning models for the 
fragmentation of rock assessment. Using an end-to-end deep 
learning technique, convolution neural network architecture 
was trained to predict mean sizes of blasted rock fragments 
straight from a 2D image. His research examines the DNN 
model’s accuracy and effectiveness as a tool for automated 
and rapid rock fragmentation analysis. Researchers have 
tried different numerical and Artificial Intelligence (AI) 
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techniques for the determination of the size distribution of 
rock fragments (Zhang & Goh, 2013; Zhang et al., 2019, 
2020a, b, c; Kumar et al., 2021; Li et al., 2022).

Relevance vector machine (RVM) is a type of soft 
computing method that combines the concepts of Markov 
property, automated relevance determination (ARD), Bayesian 
principle, and maximum probability into a probabilistic 
Bayesian learning framework (Kong et al., 2019). The functional 
forms of RVM and SVM are identical. The much more 
significant benefit of RVM over SVM is its ability to make 
probabilistic predictions. RVM’s high sparseness also 
allows it to reduce the number of kernel functions utilized 
in computing, making it particularly suitable for online 
monitoring. SVM kernel functions must satisfy Mercer’s 
criterion, which asserts that the related kernel matrix of a 
symmetric function is semi-positive. SVM kernel functions 
must satisfy Mercer’s criterion, which asserts that the related 
kernel matrix of a symmetric function is semi-positive. 
RVM, on the other hand, has the advantage of being able to 
use any kernel function without having to satisfy Mercer’s 
criterion (Samui, 2012; Li et al., 2017; Biswas et al., 2019; 
Kardani et al., 2021; Pradeep et al., 2021). In the domain of 
machine learning, GPR, a nonparametric Bayesian method 
fo regression, is causing a stir. GPR has various advantages, 
including the capacity to work with limited datasets and 
provide uncertainty measures on predictions (Chalupka et al., 
2013; Caywood et al., 2017; Baiz et al., 2020). The minimax 
probability machine classification technique underpins MPMR, 
which is a regression method. There were no assumptions 
made in this model about the numerical distribution of the 
data. It is based on the probabilistic framework. It is been 
used brilliantly in a variety of engineering sectors (Strohmann 
& Grudic, 2003; Samui & Kim, 2017; Kumar et al., 2020).

For the purpose of determining the mean particle size 
50X  resulting from rock blast fragmentation, this article uses 

RVM, GPR, and MPMR. The dataset contains information 
about the ratio of bench height to drilled burden /B , ratio of 
stemming to burden ( /T B), ratio of spacing to burden ( /S B), 
ratio of burden to hole diameter ( /B D), modulus of elasticity 
(E), powder factor ( fP ), in-situ block size ( BX ) are inputs and 
outputs are 50( )X  in the database. The models are trained by 
using data of 70% and tested by 30% data. These models are 
performing under MATLAB software. The predicted mean size 
of rock 50( )X  from models results is compared with actual data 
for analysis of the capacity of the model. For the comparative 
purpose statistical parameters, actual vs predicted curve, Taylor 
diagram, error bar, and DDR criteria are used in this article.

2. Details of data

The blast database created by Hudaverdi et al. (2011) 
(Kulatilake et al., 2010; Hudaverdi et al., 2011; Shi et al., 2012) 
is covered in this section. To create the blast database, data 
from previous blasts in various regions of the world. There are 
quarries in Istanbul, as well as mines in Spain called Enusa and 
Reocin. The Murgul Copper Mine in northeastern Turkey, with 
Mrica Quarry in Indonesia, Soma Basin in western Turkey, 
the Dongri–Buzurg mine in Central India, and the Akdaglar 
and Ozmert Quarries in northern Istanbul (Kulatilake et al., 
2010). The ratio of bench height to drilled burden ( )/H B  , 
ratio of stemming to burden ( /T B), ratio of spacing to burden 
( /S B), ratio of burden to hole diameter ( /B D), modulus of 
elasticity (E), powder factor ( fP ), in-situ block size ( BX ) are 
inputs and outputs are 50X  in the database. Figure 1 shows the 
scatter plot matrix for the original data set. Table 1 shows the 
statistical analysis of the input variables used to develop the 
models to predict fragmentation. The term “normalization” in 
statistics refers to the scaling down of a data collection so that 
the normalized data falls between 0 and 1. Such normalization 
approaches make it possible to compare matching normalized 
values from two or more separate data sets in a way that 
eliminates the impact of scale differences. To put it another 
way, a data set with large values may readily be compared to a 
data set with lower values. The data is split into two groups. A 
training dataset is necessary for the model to be trained. 70% 
of data sets are considered for training in this study. A testing 
dataset is necessary in order to estimate model performance. 
The remaining 30% is used as the testing data set in this study. 
The normalization equation is shown in Equation 1.

( )
( )

Actual mini
Normalized

maxi mini

x x
x

x x
−

=
−

 (1)

3. Developed model details

3.1 Relevance Vector Machine (RVM)

RVM is introduced by Tipping (2000). It is constructed 
based on the Bayesian concept. In RVM, the Equation 2 represents 
the input and output relation.

t w ε= Φ +  (2)

This article uses , , , , , ,  f BH B S B B D T B P E and X  
as inputs of RVM. The output is X50.

Table 1. Statistical analysis of the input parameters used to create models to predict fragmentation.

/S B /H B /B D /T B fP BX E
Minimum 1 1.3 18 0.5 0.2 0.02 9.5
Maximum 1.7 6.8 39.5 4.7 1.3 2.3 60

Mean 1.2 3.3 27.4 1.3 0.5 1.1 29.5
Std deviation 0.1 1.6 4.8 0.7 0.2 0.5 17.9
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So, , , , , , ,f Bx H B S B B D T B P E X =    and 50y X=   

Where ( ) ( )1 , , Nx xφ φ Φ = …   and ( ) ( )1, ,n nx K x xφ =   

( ) ( )2, , , ,
T

n n MK x x K x x … , ( )1,nK x x  is kernel function.  ε 
follows the Gaussian distribution having mean zero and 2σ  
variance. The likelihood of the complete dataset is given below:

( )2 2 2
2 2

1, 2 exp
2

Ntp
w t w

σ πσ
σ

−   = −   −Φ   
 (3)

The value of t  can be determined by maximizing the 
above Equation 2. The maximization of Equation 2 can cause 
overfitting. Over the weights, automated relevance detection 
(ARD) prior is set to prevent overfitting.

( ) ( )1

0

| |0, 
N

i i
i

p w N wα α−

=

=∏  (4)

Where the hyperparameter vector that specifies how far each 
weight can depart from zero. According to Bayes’ rule, the 
combination of likelihood and prior is given by:

2
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 (5)

The posterior covariance ( )Σ  and mean ( )µ  are given 
below:

( ) 12 TA α
−−Σ = + Φ Φ  (6)

2 T tµ σ −= Φ∑  (7)

Where ( )A diag α=

Figure 1. Correlation and scatter plot of data.
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The details of RVM is given by Tipping (2000). Radial 

basis function ( ) ( )( )
2, exp

2

T
i i

i
x x x x

x x
σ

 − − = − 
  

 , where the 

kernel function is the width of the radial basis function σ .

3.2 Gaussian Process Regression (GPR)

For output (y) prediction, the GPR model use the 
following model

( )i iy f x ε= +  

In this article, GPR uses the same inputs and output 
as used by the RVM.

So, , , , , , ,  f B
H S B Tx P E X
B B D B

 =   
 and 50y X=   

The spreading of output ( )1Ny +  for a novel input vector 
( )1Nx +  is represented by

( )1
1

~ 0, N
N

y
N K

y +
+

 
 
 

 (8)

The expression of N 1K +  is given below:
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 (9)

Where ( )1  NK x +  is the 1N ×  vector which covariances lies 
between training and the testing input, and ( )1  NK x +  represent 
the auto covariance of the test input.

The distribution of 1Ny +  is Gaussian. The mean and 
variance of 1Ny +  are given below:

( ) 1
1  T

NK x K yµ −
+=  (10)

( ) ( ) ( )2 1
1 1 1

T
N N Nk x K x K K xσ −
+ + += −  (11)

The GPR model uses the same training dataset, testing 
dataset, kernel function, and normalization technique as 
used by the RVM model. The program of GPR has been 
developed by MATLAB.

3.3 Minimax Probability Machine Regression (MPMR)

MPMR is developed by Lanckriet et al. (2003). 
In MPMR, the relation between input(x) and output(y) is 
given by the following equation.

( )
1

,
N

i i
i

y K x x bβ
=

= +∑  (12)

Where ( ),iK x x  is kernel function, iβ  and  b  are output from 
the MPMR algorithm.

In this article, MPMR uses the same inputs and output 
as used by the RVM and GPR.

So, f B
H S B T, , , ,  P ,  E,   X
B B D B

x  =   
 and 50y X=   

MPMR is developed by constructing dichotomy 
classifier [24]. All of the regression data ε+  is shifted into 
one data set along the output. The second dataset is created 
by relocating all of the regression data ε−  down the output 
line. The regression surface is the categorization border 
between these two classes.

Both the RVM and the MPMR models employ the 
identical training dataset, testing dataset, kernel function, 
and normalization technique. The program of MPMR has 
been constructed using MATLAB.

3.4 Evaluation of models

The model’s accuracy was explained using a variety of 
statistical methodologies. The parameters are determination 
coefficient ( 2R ), Nash-Sutcliffe efficiency (NS), Root mean 
square error (RMSE), Weighted mean absolute percentage 
error (WMAPE), Variance Account Factor (VAF), Performance 
index (PI ) (Wong, 1985), Willmott’s Index of agreement 
(WI ) (Willmott, 1984), Mean absolute error (MAE) (Chai 
& Draxler, 2014), Mean Bias Error (MBE ), Expanded 
uncertainty ( 95U ) (Behar et al., 2015), and t-statistic (  t stat) 
(Stone, 1994).
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2 2
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( )2
1

1 N

i i
i

RMSE d y
N

=

= −∑  (16)
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1 100i i

i

var d y
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var d
 −
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( )2. 0.01PI adj R VAF RMSE= + × −  (18)
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RMSE MBE
−
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 (23)

4. Results and discussion

4.1 Parameter and evaluation of models

The models are trained by using training data set 
under adjusting model parameters by trial and error method. 
The achievement of RVM model depends on the right 
selection of value of σ . The design value of σ  has been 
determined using the trial and error method. The developed 
RVM model gives greatest performance shown in Table 1. 
The value of w  has been represented in Figure 2. In Figure 2 it 
is clearly shown that 22 training datasets have non-zero w. 
So, number of relevance vector is 22. Figures 3-5 demonstrate 
the performance of training dataset and testing dataset. 
This article uses Determination coefficient ( 2R ) to asses 
the performance of the developed RVM, GPR and MPMR 
models. For a good model, the value of 2R  should be close 
to one. Figures 3-5 show that the value of R for both the 
training and testing datasets is close to one. For the prediction 
of 50X , the constructed RVM yields the following equation 
(Equation 24).

( )( )90

1

x exp
0.08

T
i i

i
i

x x x x
wε

=

 − − = − 
  

∑  (24)

For GPR model the design values of error ε  and kernel 
function σ  have been considered by the approach of trial 
and error method. Therefore, the developed GPR proves 
his ability for prediction of 50X . Similarly for MPMR, 
Figure 5 illustrates the performance of training and testing for 
the MPMR model. It is also clear from figure that the value 
of R2 is close to one for training as well as testing datasets. 
The model tuning parameters are shows in the Table 2.

For the training and testing datasets, a scatter plot is 
created showing actual against predicted values. Scatter plot 
measure the prediction capacity of the developed models 
using the target value and actual value. The point on the line 
( )y x=  denotes the predictive model’s perfect prediction value. 
Similarly, a point close to the line denotes a model forecast 
that is accurate. Figures 3-5, depicts a graphical depiction of 
the actual and anticipated value performance for the training 
datasets and testing datasets. According to this graph, all three 
models are the best, especially RVM achieving 2 0.99R =  in 
the training and testing stages of the model.

Table 2. Model tuning parameter.
RVM GPR MPMR

ε - 0.001 0.004
σ 0.2 0.5 0.7

Figure 2. Weights Vs number of data for RVM.

Figure 3. Actual Vs predicted plot for GPR.
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4.2 Statistical parameter

Table 3 shows the statistical parameters of the proposed 
models. In the rock sample, all of the models achieve above a 
95% level of correlation. In every case of a rock sample, the 
models outperformed the humans. To account for the higher 
efficiency of the models, RMSE, MAE, and MBE should be 
near to 0, R2 should be close to 1, and VAF should be close 
to 100. As a result, the improved fit of all of the models 
is confirmed. The degree of error in model predictions is 
measured by WI, which runs from 0 to 1. Its values near 
1 are the most advantageous for good models. The model 
with the greater value is superior. All models have the best 
value based on the limits and range of parameters in these 
tables. MPMR values are best then RVM better than GPR. 
More detail of parameters are referred in Kardani et al. (2021).

4.3 Taylor diagram

The mathematical diagrams are used to show which of 
various model’s accuracy in single 2D, Taylor created this 
figure in 1994 (Taylor, 2001) to make comparing different 
models easier. The Pearson correlation coefficient, the root-
mean-square error (RMSE), and the standard deviation are 
used to assess the degree of correspondence between the 
modeled and observed behavior in terms of three statistics. 
This diagram (Figures 6-7) is presented in this article using the 
GPR, MPMR, and RVM models. All models are performing 
well in the training and testing stages. When compared to 
GPR and MPMR, RVM is the best.

4.4 Error bars

This section studies the error of predicted data in 
each model for the purposes of comparison of the model. 
The error bar diagrams are used to display the error level 
in models. Maximum, mean, and minimum values are also 

Figure 4. Actual Vs predicted plot for RVM. Figure 5. Actual Vs predicted plot for MPMR.

Figure 6.  Taylor diagram for the dataset (training).

Figure 7.  Taylor diagram for the dataset (testing).
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shown in Figures 8-10. In the GPR model has been described 
most of the values are negative and the range of -0.1 to 0.1. 
In RVM error values are in the range of -0.1 to 0.1 and the 
maximum, mean, and minimum values are also better than 
GPR. MPMR error values are comparatively best because 
the range of -0.06 to 0.06 and other maximum, mean and 
minimum values also. Therefore, the solution of this study 
MPMR has been the robust model.

4.5 DDR criterion

Developed discrepancy ratio also used in this paper 
and it was proposed by Noori et al. (2010). Evaluation 
have been dependent on MSE and R2. DDR values were 
obtained by Equation 25. The standard error indexes a mean 
error value but does not provide information about the error 
distribution. As a result, the model’s efficiency during the 
development phase must be assessed through the use of the 
dataset. Figures 11-12 shows the DDR results obtained for 

Table 3. Evaluated statistical parameter values.

Parameters GPR RVM MPMR Ideal valueTrain Test Train Test Train Test
R2 0.9747 0.9751 0.9818 0.9799 0.9939 0.9939 1

WMAPE 0.1780 0.0941 0.0714 0.1265 0.0356 0.0765 0
NS 0.9350 0.9720 0.9816 0.9409 0.9939 0.9863 1

RMSE 0.0609 0.0274 0.0324 0.0398 0.0186 0.0192 0
VAF 97.1459 97.2211 98.1804 97.0058 99.3929 98.6462 100
PI 1.8787 1.8684 1.9265 1.8837 1.9677 1.9477 2

MAPE 35.5901 15.2365 12.2803 24.2228 6.9645 10.3958 0
WI 0.9826 0.9929 0.9953 0.9867 0.9985 0.9963 1

MAE 0.0544 0.0227 0.0218 0.0305 0.0109 0.0185 0
MBE 0.0456 -0.0025 -0.0038 -0.0280 0.0000 0.0018 0
U95 0.2335 0.1717 0.2433 0.1934 0.2423 0.1580 0
t-sta 6.5916 0.3017 0.6848 3.2728 0.0023 0.3185 Smaller value

Figure 8. Error bars for GPR model.

Figure 9. Error bars for RVM model.

Figure 10. Error bars for MPMR model.

Figure 11. DDR values for train data.
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all three models in the both (train and test) stages. The DDR 
figures shows the less deviation models (i.e.) MPMR curve 
nearly equal to zero line. When compared to the efficiency 
of other models based on DDR index, it reveals that the 
MPMR model is best.

 1 
 

Estimated valueDDR
Actual value

 = − 
 

 (25)

5. Conclusion

The machine learning methods were developed for 
predicting the rock fragmentation 50X  due to drilling and 
blasting operations by using GPR, SVM, and MPMR models. 
A predicted all models were developed using factors such as 
blast design parameters, explosive parameters, modulus of 
elasticity, and in-situ block size. The developed models were 
trained using 90 training data and performance was tested by 
13 testing data. The models were successfully demonstrated 
for predicting the rock fragmentation 50X . The performances 
were evaluated by using statistical parameter, Actual vs, 
predicted curve, Taylor diagram, Error bar diagram , and 
developed discrepancy ratio. All statistical parameter values 
of models were attained result within the ideal limit. Actual 
vs predicted show the accuracy of predicted value. Taylor 
diagram deals with three parameters like correlation, standard 
deviation, and RMSE in single 2D graph. In this diagram, the 
MPMR model behaved admirably. Error value also used to 
compared the models, MPMR have been reached very lesser 
range of error (-0.06 to 0.06). DDR values also showed nearer 
to the 0, in the case of MPMR. From this evaluation study, 
all models were performed well especially for MPMR has 
been performed best than other two models. The MPMR has 
been attained best accuracy of predicted value, R2 = 0.99 in 
training and testing. Hence, the MPMR has been chosen as 
a robust model for predicting of rock fragmentation 50X . 
Expanding the blast databases that will be used to build 
the fragmentation prediction models outlined in this paper, 
as well as analyzing additional rock attributes of the rock 
mass that will be exposed to blasting if such information is 
available, could be part of future work.
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List of symbols

Actualx  actual data set
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N 1K +  covariance matrix

References

Aler, J., Mouza, J., & Arnould, M. (1996). Measurement 
of the fragmentation efficiency of rock mass blasting 
and its mining applications. International Journal of 
Rock Mechanics and Mining Sciences & Geomechanics 
Abstracts, 33, 125-139. http://dx.doi.org/10.1016/0148-
9062(95)00054-2.

Baiz, A.A., Ahmadi, H., Shariatmadari, F., & Torshizi, M.A.K. 
(2020). A Gaussian process regression model to predict 
energy contents of corn for poultry. Poultry Science, 99, 
5838-5843. http://dx.doi.org/10.1016/j.psj.2020.07.044.

Bamford, T., Esmaeili, K., & Schoellig, A.P. (2021). A 
deep learning approach for rock fragmentation analysis. 
International Journal of Rock Mechanics and Mining 
Sciences, 145, 104839. http://dx.doi.org/10.1016/j.
ijrmms.2021.104839.

Behar, O., Khellaf, A., & Mohammedi, K. (2015). Comparison 
of solar radiation models and their validation under 
Algerian climate - the case of direct irradiance. Energy 
Conversion and Management, 98, 236-251. http://dx.doi.
org/10.1016/j.enconman.2015.03.067.

Biswas, R., Samui, P., & Rai, B. (2019). Determination of 
compressive strength using relevance vector machine 
and emotional neural network. Asian Journal of Civil 
Engineering, 20, 1109-1118. http://dx.doi.org/10.1007/
s42107-019-00171-9.

Figure 12. DDR values for test data.



Thangavel & Samui

Thangavel & Samui, Soil. Rocks, São Paulo, 2022 45(4):e2022008122 9

Caywood, M.S., Roberts, D.M., Colombe, J.B., Greenwald, 
H.S., & Weiland, M.Z. (2017). Gaussian process regression 
for predictive but interpretable machine learning models: 
an example of predicting mental workload across tasks. 
Frontiers in Human Neuroscience, 10, 1-19. http://dx.doi.
org/10.3389/fnhum.2016.00647.

Chai, T., & Draxler, R.R. (2014). Root mean square error 
(RMSE) or mean absolute error (MAE)? Arguments against 
avoiding RMSE in the literature. Geoscientific Model 
Development, 7, 1247-1250. http://dx.doi.org/10.5194/
gmd-7-1247-2014.

Chalupka, K., Williams, C.K.I., & Murray, I. (2013). A 
framework for evaluating approximation methods for 
Gaussian process regression. Journal of Machine Learning 
Research, 14, 333-350.

Hudaverdi, T., Kulatilake, P.H.S.W., & Kuzu, C. (2011). 
Prediction of blast fragmentation using multivariate analysis 
procedures. International Journal for Numerical and 
Analytical Methods in Geomechanics, 35(12), 1318-1333.

Jethro, M.A., Ajayi, O.D., & Elijah, O.P. (2016). Rock 
fragmentation prediction using Kuz-Ram Model. Journal 
of Environment and Earth Science, 6, 110-115.

Jug, J., Strelec, S., Gazdek, M., & Kavur, B. (2017). Fragment 
size distribution of blasted rock mass. IOP Conference 
Series. Earth and Environmental Science, 95, 042013. 
http://dx.doi.org/10.1088/1755-1315/95/4/042013.

Kardani, N., Pradeep, T., Samui, P., Kim, D., & Zhou, A. 
(2021). Smart phase behavior modeling of asphaltene 
precipitation using advanced computational frameworks: 
ENN, GMDH, and MPMR. Petroleum Science and 
Technology, 39(19-20), 804-825. http://dx.doi.org/10.1
080/10916466.2021.1974882.

Kong, D., Chen, Y., Li, N., Duan, C., Lu, L., & Chen, D. 
(2019). Relevance vector machine for tool wear prediction. 
Mechanical Systems and Signal Processing, 127, 573-594. 
http://dx.doi.org/10.1016/j.ymssp.2019.03.023.

Kulatilake, P.H.S.W., Qiong, W., Hudaverdi, T., & Kuzu, 
C. (2010). Mean particle size prediction in rock blast 
fragmentation using neural networks. Engineering 
Geology, 114, 298-311. http://dx.doi.org/10.1016/j.
enggeo.2010.05.008.

Kumar, M., Samui, P., Kumar, D., & Zhang, W. (2021). 
Reliability analysis of settlement of pile group. Innovative 
Infrastructure Solutions, 6, 24. http://dx.doi.org/10.1007/
s41062-020-00382-z.

Kumar, S., Rai, B., Biswas, R., Samui, P., & Kim, D. (2020). 
Prediction of rapid chloride permeability of self-compacting 
concrete using Multivariate Adaptive Regression Spline 
and Minimax Probability Machine Regression. Journal 
of Building Engineering, 32, 101490. http://dx.doi.
org/10.1016/j.jobe.2020.101490.

Kuznetsov, V.M. (1973). The mean diameter of the fragments 
formed by blasting rock. Soviet Mining Science, 9, 144-
148. http://dx.doi.org/10.1007/BF02506177.

Lanckriet, G.R.G., Ghaoui, L., Bhattacharyya, C., & Jordan, 
M.I. (2003). A robust minimax approach to classification. 
Journal of Machine Learning Research, 3, 555-582. http://
dx.doi.org/10.1162/153244303321897726.

Li, N., Nguyen, H., Rostami, J., Zhang, W., Bui, X., & Pradhan, 
B. (2022). Predicting rock displacement in underground 
mines using improved machine learning-based models. 
Measurement, 188, 110552. http://dx.doi.org/10.1016/j.
measurement.2021.110552.

Li, S., Zhao, H., & Ru, Z. (2017). Relevance vector machine-
based response surface for slope reliability analysis. 
International Journal for Numerical and Analytical 
Methods in Geomechanics, 41, 1332-1346. http://dx.doi.
org/10.1002/nag.2683.

Mohamed, F., Riadh, B., Abderazzak, S., Radouane, N., 
Mohamed, S., & Ibsa, T. (2019). Distribution analysis of 
rock fragments size based on the digital image processing 
and the Kuz-Ram model Cas of Jebel Medjounes Quarry. 
Aspects in Mining & Mineral Science, 2, 325-329. http://
dx.doi.org/10.31031/amms.2019.02.000545.

Noori, R., Khakpour, A., Omidvar, B., & Farokhnia, A. (2010). 
Comparison of ANN and principal component analysis-
multivariate linear regression models for predicting the 
river flow based on developed discrepancy ratio statistic. 
Expert Systems with Applications, 37, 5856-5862. http://
dx.doi.org/10.1016/j.eswa.2010.02.020.

Ozkahraman, H.T. (2006). Fragmentation assessment and 
design of blast pattern at Goltas limestone quarry, Turkey. 
International Journal of Rock Mechanics and Mining 
Sciences, 43, 628-633. http://dx.doi.org/10.1016/j.
ijrmms.2005.09.004.

Pradeep, T., Bardhan, A., & Samui, P. (2021). Prediction of 
rock strain using soft computing framework. Innovative 
Infrastructure Solutions, 7, 37. http://dx.doi.org/10.1007/
s41062-021-00631-9.

Samui, P. (2012). Application of relevance vector machine 
for prediction of ultimate capacity of driven piles 
in cohesionless soils. Geotechnical and Geological 
Engineering, 30, 1261-1270. http://dx.doi.org/10.1007/
s10706-012-9539-9.

Samui, P., & Kim, D. (2017). Minimax probability machine 
regression and extreme learning machine applied to 
compression index of marine clay. Indian Journal of 
Geo-Marine Sciences, 46(11), 2350-2356.

Shi, X.Z., Zhou, J., Wu, B.B., Dan, H., & Wei, W. (2012). 
Support vector machines approach to mean particle size 
of rock fragmentation due to bench blasting prediction. 
Transactions of Nonferrous Metals Society of China, 22(2), 
432-441. http://dx.doi.org/10.1016/S1003-6326(11)61195-3.

Singh, B.K., Mondal, D., Shahid, M., Saxena, A., & Roy, 
P.N.S. (2019). Application of digital image analysis for 
monitoring the behavior of factors that control the rock 
fragmentation in opencast bench blasting: a case study 
conducted over four opencast coal mines of the Talcher 



Determination of the size of rock fragments using RVM, GPR, and MPMR

Thangavel & Samui, Soil. Rocks, São Paulo, 2022 45(4):e2022008122 10

Coalfields, India. Journal of Sustainable Mining, 18, 
247-256. http://dx.doi.org/10.1016/j.jsm.2019.08.003.

Stone, R.J. (1994). A nonparametric statistical procedure for 
ranking the overall performance of solar radiation models 
at multiple locations. Energy, 19, 765-769. http://dx.doi.
org/10.1016/0360-5442(94)90014-0.

Strohmann, T., & Grudic, G.Z. (2003). A formulation for 
minimax probability machine regression. Advances in 
Neural Information Processing Systems, 15, 1-8.

Tao, J., Yang, X.G., Li, H.T., Zhou, J.W., Qi, S.C., & Lu, 
G.D. (2020). Numerical investigation of blast-induced 
rock fragmentation. Computers and Geotechnics, 128, 
103846. http://dx.doi.org/10.1016/j.compgeo.2020.103846.

Taylor, K.E. (2001). Summarizing multiple aspects of model 
performance in a single diagram. Journal of Geophysical 
Research, D, Atmospheres, 106(D7), 7183-7192.

Tipping, M.E. (2000). The relevance vector machine. Advances 
in Neural Information Processing Systems, 12, 652-658.

Willmott, C.J. (1984). On the evaluation of model performance 
in physical geography. In G.L. Gaile & C.J. Willmott (Eds.), 
Spatial statistics and models (pp. 443-460). Dordrecht: 
Springer. https://doi.org/10.1007/978-94-017-3048-8_23.

Wong F.S. (1985). Slope reliability and response surface 
method. Journal of Geotechnical Engineering, 111, 32-53.

Yang, Z., He, B., Liu, Y., Wang, D., & Zhu, G. (2021). 
Classification of rock fragments produced by tunnel 
boring machine using convolutional neural networks. 

Automation in Construction, 125, 103612. http://dx.doi.
org/10.1016/j.autcon.2021.103612.

Zhang, W., Zhang, R., Wang, W., Zhange, F., & Goh, A.T.C. 
(2019). A multivariate adaptive regression splines model 
for determining horizontal wall deflection envelope for 
braced excavations in clays. Tunnelling and Underground 
Space Technology, 84, 461-471. http://dx.doi.org/10.1016/j.
tust.2018.11.046.

Zhang, W., Zhang, R., Wu, C., Goh, A.T.C., & Wang, L. (2020a). 
Assessment of basal heave stability for braced excavations 
in anisotropic clay using extreme gradient boosting and 
random forest regression. Underground Space, 7(2), 
233-241. http://dx.doi.org/10.1016/j.undsp.2020.03.001.

Zhang, W., Zhang, R., Wu, C., Goh, A.T.C., Lacasse, S., 
Liu, Z., & Liu, H. (2020b). State-of-the-art review of 
soft computing applications in underground excavations. 
Geoscience Frontiers, 11, 1095-1106. http://dx.doi.
org/10.1016/j.gsf.2019.12.003.

Zhang, W.G., & Goh, A.T.C. (2013). Multivariate adaptive 
regression splines for analysis of geotechnical engineering 
systems. Computers and Geotechnics, 48, 82-95. http://
dx.doi.org/10.1016/j.compgeo.2012.09.016.

Zhang, W.G., Li, H.R., Wu, C.Z., Li, Y.Q., Liu, Z.Q., & Liu, 
H.L. (2020c). Soft computing approach for prediction 
of surface settlement induced by earth pressure balance 
shield tunneling. Underground Space, 6(4), 353-363. 
http://dx.doi.org/10.1016/j.undsp.2019.12.003.


