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1. Introduction

Although we (engineers) are typically used to considering 
engineering as an exact science, we do not always treat it 
as such. All engineering areas deal with uncertainties (e.g., 
inherent, spatial, temporal, from measurements or from a 
model), however we do not always take them into account. 
Considering and quantifying these uncertainties enables us to 
evaluate the precision threshold of our estimations (calculated 
results). When engineers understand the importance of 
uncertainty quantification and start considering it in their 
designs and analysis, only then will engineering be conducted 
as an exact science, within its limitations. Efforts to determine 
these thresholds should not be overlooked, such as currently 
observed in practice and even in academic applications, 
unfortunately. Therefore, this topic requires due attention 
and may lead to a lengthy discussion.

For Geotechnical Engineering, uncertainties and 
variabilities associated with material properties, which make 
up a geotechnical structure, have substantial influences on 
its safety and behavior. This sensitivity is significant in 
this area of study because it deals with naturally formed 
materials (i.e., soils and rocks), sources of large variances 
and heterogeneity.

Nowadays, many commercial programs allow the 
realization of probabilistic analysis to evaluate geotechnical 
structures. Usually, these programs apply the Monte Carlo 
simulation (MCS) technique, associated with the Limit 
Equilibrium Method (LEM) or the Finite Element Method 
(FEM), to perform this analysis. However, today, these 
programs hold limited resources, such as the number of 
random variables, the type of probability density functions, 
the spatial variability consideration, the high computational 
cost, among others (Belo & Silva, 2020; Belo et al., 2022).
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In the literature, studies have proposed various 
probabilistic approaches for the geotechnical area. The Random 
Finite Element Method (RFEM), proposed by Griffiths & 
Fenton (1993), is the most accepted and used approach for 
this purpose. RFEM reconciles the FEM with the Random 
Field Theory (RFT) to simulate the spatial variability of 
soil properties. It correctly searches for the weakest path 
through heterogenous material and leads to probabilities of 
failure higher than would be estimated by disregarding the 
spatial variability (Sayão et al., 2012). Nevertheless, RFEM 
disregards known field data, usually determined by sampling 
material or site investigation. It is the major disadvantage of 
this approach and, disregarding these data and their positions 
within the field, can cause fluctuations in variance of analysis 
and hence produce an incompatible design, touching safety 
and economy. Therefore, its application (unconditional to 
data) is useful in generic geotechnical design, e.g., in terms 
of code or standard provisions.

Approaches aiming to consider known field data make 
use of the Conditional Random Field (CRF). Despite the fact 
that studies regarding CRF have increased in recent years, 
studies using this technique in geotechnical engineering 
remain limited in number. Mrabet & Bouayed (2000) used the 
CRF to reduce the uncertainty on the probabilistic results of 
a dam analysis, more specifically regarding the properties of 
the compacted soil masses. Folle et al. (2006) presented the 
main statistical and geostatistical methods in geotechnics to 
deal with quantification regarding the heterogeneity of soil 
properties. Then, they evaluated a case study using Sequential 
Gaussian Simulation (SGS). Griffiths et al. (2009) investigated 
the influence of spatial variability on slope reliability using 
the RFEM. However, the spatial correlation function was 
assumed to be fixed, described by an exponentially decaying 
(Markov) function. Monteiro et al. (2009) approached the 
problem of rock characterization using drill measurements. 
The authors incorporated the spatial relationship using the 
CRF to infer the geology of the neighboring regions. Kim & 
Sitar (2013) applied the CRF to a homogeneous soil slope to 
investigate its stability, assuming the deterministic critical 
slip surface as fixed for the probabilistic analysis.

Lately, Schöbi & Sudret (2015) combined the CRF 
with the framework of sparse polynomial chaos expansions 
to analyze response quantities in geotechnical problems, 
illustrated by applying the approach to a strip foundation 
problem on a two-layer soil mass. Li et al. (2016) presented 
a method that combined 3D kriging with a random field 
generator to develop the CRF. The authors applied this for a 
slope stability analysis, aiming to identify the best locations 
for site investigations and compare different candidate slope 
designs. Liu et al. (2017) applied the CRF to investigate a 
cohesion-frictional slope using a MATLAB developed code. 
The CRF was generated using the kriging method and the 
Cholesky decomposition technique. Yang et al. (2017) used 
the CRF to investigate undrained slope stability based on 
the RFEM and a kriging method. Despite not considering 

conditional simulations, Muñoz et al. (2018), as Griffiths et al. 
(2009), investigated the influence of spatial variability of the 
soil parameters on the factor of safety (FoS) of a hypothetical 
slope. However, the analysis assumed no correlations 
between variables (univariate analysis, i.e., independent 
random variables), spatial variability followed normal and 
lognormal distribution, by using Monte Carlo simulations 
and Kriging process, and found the FoS with the LEM. 
Johari & Gholampour (2018) developed a MATLAB code 
to apply the CRF to a stochastic analysis of an unsaturated 
soil slope. Yang et al. (2019) used the CRF to investigate 
the “optimal” site investigation scope for a slope design, 
combining the analysis of the cost of site investigation with 
the cost of slope failure. Johari & Fooladi (2020) presented a 
probabilistic analysis of a real soil slope using the concepts of 
the CRF, coded in MATLAB. Jurado et al. (2020) proposed 
a rational approach to test the spatial variance of soil based 
on site investigation and on the CRF.

Incorporating the data known from the field and 
its spatial positions in the analysis can be performed by 
using geostatistical concepts and techniques. Geostatistical 
simulations enable the generation of random fields that agree 
with their statistical information and eventual conditioning 
data. Liu et al. (2019) showed that, among the random field 
generation methods, seven cover most studies, i.e., sequential 
Gaussian simulation (SGS), local average subdivision (LAS), 
turning bands simulation (TBS), spectral method (SM), 
Karhunen-Loève expansion (KLE), matrix decomposition 
method (MD) and moving average method (MA).

KLE and MD present the highest algorithm complexity, 
followed by MA, SM, TBS, SGS and LAS. Furthermore, the 
algorithm complexity can be powered in cases of multivariate 
applications. Although KLE has been widely used in stochastic 
approaches, it poses a problem in applications, where complex 
geometry will be encountered or when assuming high dimension 
covariance matrix, and some problems have been identified 
regarding heterogeneity of the generated sample functions 
(Sudret & Der Kiureghian, 2000; Stefanou & Papadrakakis, 
2007). MD, as it is, suffers from several deficiencies, e.g., 
like KLE, problems with a considerable number of nodes or 
somehow increasing the dimension of covariance matrix will 
likely run out of memory and, even if that does not happen, 
the whole processing computation cost is high, including 
Cholesky decomposition and matrix-vector multiplication. 
MA involves decomposition in the convolution sense of 
covariance function, which may influence the applicability 
regarding computational cost and memory requirements. 
Although the limitation of TBS had been overcome with 
computational developments, it was usually associated with 
the use of few lines to generate random fields, which may 
introduce artifact effects into them (Emery & Lantuéjoul, 
2006). Before each conditional simulation, SGS requires the 
computation of expected mean and variance. Moreover, SM 
and LAS are limited to only rectangular grids (simulation 
mesh), a condition that may be true for some of the above-
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mentioned methods when simplifications are assumed to 
relieve the computational processing.

Considering that, the main current techniques applied to 
geostatistical simulations are Sequential Gaussian Simulation 
(SGS) (Isaaks, 1990), Turning Bands Simulation (TBS) 
(Matheron, 1973), and their multivariate versions, Sequential 
Gaussian Co-simulation (COSGS) (Verly, 1993) and Turning 
Bands Co-simulation (TBCOSIM) (Emery, 2008). Multivariate 
simulations or co-simulations are highly recommended for 
cases with cross-correlated variables, commonly experienced 
for soil properties.

Some studies have emerged that compare these techniques. 
Ren (2005) published a short note on conditioning TBS. 
In this study, the author presented results that demonstrated 
that the TBS is a fast simulation method when multiple 
realizations are necessary. For example, performing only 
one realization of a conditional simulation, SGS was around 
5 times faster than TBS. However, increasing this number 
to 100 realizations, SGS performed around 5.5 times slower 
than TBS, and this discrepancy presents an almost linear 
trend in favor of the TBS. Paravarzar et al. (2015) assessed 
the performance and accuracy of SGS and TBS for jointly 
simulating co-regionalized variables of a synthetic univariate 
case and a real multivariate one. The turning bands accurately 
reproduced the spatial correlation structure for both cases, 
while the sequential simulation produced some bias, which 
was more severe in the multivariate case.

The conclusions lead to the claim that TBCOSIM 
outperforms COSGS in terms of the cross-correlated reproduction, 
calculated by the spatial continuity and statistical parameters. 
In addition, the turning bands technique also surpassed 
other techniques in terms of lower computational costs, 
standing out more and more when the number of realizations 
increases. However, studies have not assumed the TBCOSIM 
technique for applications. Usually, studies have assumed 
the SGS or other techniques, even assuming fixed functions 
to describe the spatial correlation of soil properties. Studies 
have paid little attention to the correct reproduction of the 
spatial correlation structures of coregionalized variables - or, 
at least, they do not claim to present the evaluation of their 
structures. Studies that proposed to investigate the effects 
regarding spatial variability on probabilistic analysis have 
focused strictly on the influence of the correlation length 
(i.e., range) and paid no attention to the agreement between 
the simulated coregionalization model and the sample one.

Therefore, this paper presents an improved and efficient 
approach to address probabilistic analysis of geotechnical 
structures, a geostatistical-based enhancement of the 
Random Finite Element Method (RFEM) by incorporating 
an advanced geostatistical technique (i.e., Turning Bands 
Co-simulation, TBCOSIM), so far not jointly used. It also 
investigates the influence of correctly reproducing spatial 
variability on the multivariate probabilistic analysis of 
geotechnical structure. The primary aim of this work is to 
provide the correct consideration of the coregionalization 

model of the soil properties. We illustrate the sophisticated 
approach and those effects through an actual case of a soil 
slope, previously presented in the literature.

2. Geostatistical concepts

In reliability studies, geostatistics has gained increasing 
attention within the area of geotechnical structure design. 
Geostatistics was originally developed for mining purpose, 
aiming to characterize the concentrations of certain minerals 
in a field (Regionalized Variables Theory, RVT) (Matheron, 
1973). This theory has two objectives: first, to describe 
the spatial correlation (theoretically) and, second, to solve 
estimation problems of a regionalized variable based on a 
minimal sample (in practice).

The application of a geostatistical technique begins 
by analyzing the sample data. First, we need to assume that 
there is a possibility that the value of the random variable for 
each point, ( )Z x , in a field is correlated, to some extent, with 
the values of other nearby points, ( )Z x h+ . This means that 
the spatial continuity of a regionalized variable can be done 
with sample values based on two-points statistics. Then, the 
variogram function, ( )hγ , - used to describe the behavior of 
spatial correlation in a field - depends only on two points, 
positioned at a distance h  from each other. Analyzing all 
known data from different points gives the statistical inference 
for this function. The variogram is calculated as Equation 1.

( ) ( ) ( ) 2

1

1
2

n

i

h Z x h Z x
n

γ
=

 = + − ∑   (1)

Where n  is the number of pairs of points separated by lag 
h . Likewise, the cross-variogram function for multivariate 
fields can be determined as Equation 2.
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A theoretical variogram function must then fit the sample 
covariograms to be applied in simulations. The simple and 
cross-variograms compose the most important information for 
geostatistical simulations. However, conventional statistical 
information (i.e., mean, standard deviation, and probability 
density function) may also be required.

Determining statistical information requires some 
precautions, often neglected. For example, site investigations 
(boreholes) rarely have regular spacing in the field because 
of difficulty of access, topography, areas of environmental 
preservation, among other reasons. Thus, sampling may 
have clustered boreholes, which may introduce bias to 
statistical inferences. To address this “clustering problem”, 
the declustering technique is recommended (e.g., cell 
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declustering and polygonal declustering methods). In brief, 
the declustering entails analyzing the “influence area” for 
each borehole of the campaign and calculates the weights 
for them (Chilès & Delfiner, 2012).

Once the analysis has determined the variogram function 
and conventional statistical information of the regionalized 
or coregionalized variables, geostatistical simulations can be 
performed. If conditional simulations are desired, it would 
also require the known data (from the site investigation, 
boreholes), and their position within the field.

2.1 Turning bands co-simulation - TBCOSIM

TBCOSIM was originally presented by Emery (2008) 
and developed in MATLAB. It is based on the COSIM 
program - proposed by Carr & Myers (1985) - and the 
TBSIM - proposed by Emery & Lantuéjoul (2006). TBCOSIM 
presents significant improvements compared to previous 
proposals, which are worth mentioning:

• it allows three-dimension simulations, by grid or 
scattered points;

• it imposes no restrictions on the number of nested 
structures, known data points or random variables;

• it works with heterotopic data sets;
• it uses stationary and intrinsic models;
• it uses simple kriging, ordinary kriging or intrinsic 

co-kriging, associated with the consideration of a 
unique or moving neighborhood, to condition the 
simulations to a data set;

• it accepts 15 commonly used covariance models 
(spherical, exponential, gamma, stable, cubic, Gaussian, 
cardinal sine, J-Bessel, K-Bessel, generalized Cauchy, 

exponential sine, linear, power, mixed power and 
spline), as illustrated in Figure 1;

• it backtransforms variables from Gaussian space to 
the original units of each variable;

• it can change the support (regularization) of simulations.
Besides adapting and modifying the TBCOSIM for this 

study, it was also entirely reprogrammed using the Fortran 
language to achieve the objectives. Next, the code was linked 
to the RFEM to compose the sophisticated approach used in 
this study (we will call it “sRFEM”). For further details on the 
TBCOSIM technique, readers are referred to Emery (2008).

3. Random Finite Element Method - RFEM

Originally, RFEM was proposed by Griffiths & Fenton 
(1993), and it is considered a powerful and rigorous tool to 
take the spatial variability of soil properties into account 
for probabilistic analysis. It uses random field theory (RFT) 
jointly with the finite element method (FEM).

The FEM is used to compute the plane strain deformation 
of elastic-perfectly plastic soils governed by the Mohr-Coulomb 
failure criterion. It is also based on the strength reduction 
method (SRM) and uses eight-node rectangular quadrilateral 
elements, with reduced integration (four Gauss points per 
element) in the generation of the gravity loads, the stiffness 
matrix and the stress redistribution phase. The adopted 
solution procedure, to model material non-linearity, is the 
“constant stiffness” (modified Newton-Raphson) method. 
For more details, readers are referred to Griffiths & Lane 
(1999) and Smith et al. (2013).

RFEM uses the Local Average Subdivsion (LAS) method, 
presented by Fenton & Vanmarcke (1990), to generate the 

Figure 1. Theoretical fitting models accepted by the TBCOSIM technique.
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random fields of simulations. In order to describe the spatial 
correlation between different spaced points in the field, the 
LAS method can be used assuming five covariance functions, 
almost all associated with an exponential decay, and already 
awarded in the code (RFEM). The most commonly used and 
recommended function is the Markovian covariance function, 
which calculates the correlation coefficient ( C ) between 
soil properties at different points in the field, as Equation 3.

( )
22 22 yx

x y

hh
C h exp

a a

    = − +         

  (3)

Where xa  and ya  are the spatial correlation ranges in x  
(horizontal) and y  (vertical) directions, respectively. 
However, for assumed isotropic fields ( x ya a a= = ), it can 
be simplified to Equation 4.

( ) 2hC h exp
a

 = − 
 

 (4)

Then, the RFEM analyzes the geotechnical structure 
via the FEM application for each simulated random field. 
For example, in order to test the probabilistic stability of a soil 
slope, the mrslope2d pack executes the strength reduction method. 
In each simulation, the analysis assumes the failure threshold 
condition to determine whether it is in the success or failure 
domains. Finally, the probability of failure ( fP ) is obtained by 
the ( ) ( )  /   number of failures number of realizations  ratio. 
In brief, RFEM uses the Monte Carlo simulation (MCS).

4. Sophisticated RFEM – sRFEM

Besides incorporating the TBCOSIM to enable an 
advanced geostatistical-based enhancement of the RFEM 
that, to the best of the authors’ knowledge, has not been 
presented in the literature before, other improvements were 
also needed and integrated. They were needed to enable the 
evaluation of specific aspects of the probabilistic analysis 
that were not presented in the original approach. They are:

• Defining the experimental variograms generated by 
simulations:

o Evaluating the experimental variograms enables 
the investigation regarding the accordance with 
and the correct reproduction of the pre-defined 
coregionalization model (based on the sample one);

o Variograms are generated and analyzed in the Gaussian 
space.

• Defining the factor of safety (FoS) calculated for 
each simulation:

o The original source-code evaluates only the limit 
state condition (FoS=1), concluding if the simulated 
structure is or is not inside the failure domain;

o Evaluating the FoS for each simulation is done through 
an iterative process until convergence, considering 
a pre-defined tolerance value. This process was 
incorporated into RFEM regarding the probabilistic 
and deterministic analysis. In the deterministic 
analysis, the FoS used to be calculated by assuming 
some hypotheses values (low precision), not by an 
iterative process (convergence);

o Storing the FoS values, calculated for the structure 
for each simulation, enables the evaluation of the 
frequency distribution, or the probability density 
function (PDF), of the FoS of the analyzed structure;

o Evaluating the PDF of FoS enables revalidation of 
the calculated results because the variable’s (FoS) 
variance can be graphically illustrated, just as the 
mean value and its behavior (distribution type), close 
to the peak or in the tailings;

o Many programs use the PDF of the FoS to estimate 
the reliability index (β) of the structure.

• Analyzing the convergence of the probability of 
failure (Pf) with simulations:

o The Pf’s convergence is an important indicator that 
should be evaluated when performing a probabilistic 
analysis because it represents the precision of the 
calculated value;

o According to Melchers & Beck (2017), the MCS 
requires around 10(P+2) simulation to obtain a good 
estimate of the Pf of a system, where p is the expected 
order of the Pf of the investigated structure (Pf=x×10-P). 
Hence, when expecting a significantly low Pf, the 
total amount of required simulations would be clearly 
substantially high;

o Evaluating the Pf convergence with simulations can 
show a satisfactory stabilization for a lower or a higher 
amount than that recommended by Melchers & Beck 
(2017). Because of that, enabling this evaluation is 
really important.

• Updating parts of the open source-code with functions 
and update syntaxes that are more reliable and agile 
than its precursors:

o The functions and codes are constantly updated to 
attribute more agility and reliability to the programming. 
Therefore, revisions and updates of previous codes 
may be needed and recommend;

o Since the developed Fortran code, for the application 
of the TBCOSIM, is a recent programming (developed 
in this study), updating the available RFEM code 
ensures better compatibility between the algorithm 
frameworks.

The following steps summarize the process of performing 
a conditional probabilistic analysis of a geotechnical structure 
using the embraced sophisticated approach:

(1) treating and analyzing known data together with 
their locations in the field, which comprises:

− organizing data in a text file;
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− applying the declustering technique for data, which 
determines weights for each data and borehole (the 
declus algorithm from the Geostatistical Software 
Library, GSLIB, may be used for this step);

− constructing the histograms considering the declustering 
weights;

− determining conventional statistical information 
based on the previous step (mean, standard deviation 
or coefficient of variance, and type of distribution);

− transforming data from original units into Gaussian 
space (the nscore algorithm from the GSLIB may 
be used for this step);

− creating a text file with a table to allow the 
backtransformation of each random variable (needed 
in later steps);

− calculating the sample variograms (simple and crossed) 
based on the normalized data (the gamv algorithm 
from the GSLIB may be used for this step);

− fitting the sample variograms by theoretical variograms 
(using or not nested structures);

− identifying which data will condition the realizations 
and creating a text file with them.

(2) defining the geometry of the geotechnical structure 
(a slope in this paper), the mesh dimensions, element 
size, number of realizations and other parameters for 
the execution of RSLOPE2D (part of RFEM);

(3) discretizing the structure/field, storing the central 
position of each element that comprises the mesh;

(4) carrying out a deterministic analysis of the problem;
(5) generating the conditional random fields (one per 

realization), using the TBCOSIM technique, and 
storing them

− applying the turning bands technique to generate 
unconditional random fields;

− using the kriging technique and Equation 5 to 
condition these fields to the sample data.

( ) ( ) ( ) ( )( )cc ci kc kiZ Z Z Z= + −x x x x   (5)

where x  finds the points in space, ( )ccZ x  determines 
the value in the conditional random field, ( )ciZ x  means 
the value in the unconditional random field, ( )kcZ x  is 
the value in the kriging field based on the sample data, 
and ( )kiZ x  represents the value in the kriging field 
assuming unconditional data replacing known data.

− backtransforming the simulated values from the 
Gaussian space to the original units;

− storing the realizations.
(6) analyzing the safety of the structure for each simulated 

conditional random field;
(7) concluding the probabilistic analysis identifying the 

probability of failure ( fP ) - Monte Carlo simulation 
(MCS).

All the above-mentioned text files follow the same 
standardization formats according to the GSLIB’s specifications 
(Deutsch & Journel, 1997).

5. Case study

In order to investigate and to illustrate the effects regarding 
the reproduction of the spatial correlation structures of soil 
properties on probabilistic analyses, this paper investigates a 
real soil slope previously presented in the literature by Johari 
& Fooladi (2020). According to the reference, the site is in 
the city of Shiraz, Iran. It has fifteen boreholes, with depths 
around 25 ~ 26 m from the ground surface. Figure 2 outlines the 
positioning of these boreholes in the investigated field. Johari 
& Fooladi (2020) presented all the sample data used in this 
paper. Readers are referred to this reference for more details.

The analysis assumed a plane strain model. Since the 
data and the site present a three-dimensional arrangement, the 
analysis assumed a simulation section. Figure 2 positions the 
section in the field, while Figure 3 represents it. It is worth 
mentioning that, for a real design intention, other sections 
should also be investigated.

For the conditional simulation, only the highlighted 
boreholes were assumed as conditioning data on its 
perpendicular projections on the section plane. The conditional 

Figure 2. Site representation with borehole locations, slope and 
assumed simulation section. Modified from Johari & Fooladi (2020).
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simulation did not consider other boreholes because they 
were distant from this section, differing from the approach 
assumed by the cited reference. However, all boreholes 
were used to determine the statistical information on the 
site parameters.

5.1 Structural analysis

First, since it is an example of an illustration, the field 
was deemed as an isotropic soil layer. In other words, although 
the sophisticated approach can deal with this condition, for 
the sake of simplicity, the anisotropy of the spatial variability 
was not considered in this paper.

Then, it can be observed that the location of the boreholes, 
in Figure 2, demonstrates an irregular spatial investigation. 
As previously mentioned, clustered samples can introduce 
bias in statistical information. To deal with this condition, the 
cell declustering technique was performed. For this step, the 
analysis makes use of the well-known Geostatistical Software 
Library (GSLIB) (Deutsch & Journel, 1997), specifically 
the declus algorithm.

In agreement with Johari & Fooladi (2020), cohesion 
( c ), friction angle (φ ) and unit weight ( γ ) were assumed as 
random variables, or regionalized variables, while dilatation 
angle, elastic modulus ( E ) and Poisson’s ratio (ν ) were 
deterministic. Table 1 shows the statistical information presented 
by the reference (not declustering) and the recalculated one, 
considering the declustering technique. This shows that the 

mean and standard deviation values may vary significantly 
or not when declustering is considered. Although these 
variations can be low for this illustration, they may lead to 
different conclusions for the analysis.

The next step of the analysis comprises the generation 
of the transformation tables (from the original units to the 
Gaussian space, and vice versa). GSLIB was used once more 
for this task, specifically the nscore algorithm.

Once all the data were in the Gaussian space, they 
were analyzed to determine the variograms for the field. This 
determination used all the data from all the boreholes. GSLIB’s 
gamv algorithm can calculate these variograms, therefore 
it was incorporated into the approach. Figure 4 shows the 
simple and cross-variograms for the sample data.

For the application, a theoretical fitting function to 
the sample variograms should be determined. To define this 
function, first it was assumed to be composed of a nugget effect 
jointly with two spherical nested structures. The spherical 
spatial correlation function can be expressed as Equation 6.

( )

( )

32 1 ,   
3 2

,   

h hC h C if h a
a a

C h C if h a

     = − <    
     

= >

  (6)

Where h  is the vector lag between points in the field, C  is the 
sill variogram value, and a  is its range or correlation length.

Figure 3. Simulation section with conditioning data locations (distances in meters).

Table 1. Conventional statistical data considering and not considering the declustering.

Soil parameters
Not declustering Declustering

µ σ CoV µ σ CoV
c  (kPa) 14.89 8.487 0.57 14.02 9.379 0.67
φ  (º) 25.21 6.050 0.24 25.12 5.782 0.23

γ  (kN/m3) 17.38 0.869 0.05 17.41 0.928 0.05
E  and ν  were deterministic parameters

E  (kN/m2) 35,000
ν 0.30

µ  – mean; σ  – standard deviation; ü  – coefficient of variation.
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Then, the fitting parameters (of the coregionalization 
model) were defined thought (1st) a manual fitting, followed 
by (2nd) applying the weighted least squares method and 
(3rd) another manual fitting, as refinement, all assuming the 
requirement of obtaining a licit and positive semi-defined 
theoretical model. Therefore, the fitted linear function of 
the coregionalization model was described as Equation 7.

( )

( )

( )

16.0

34.0

0.00 0.00 0.00
0.00 0.48 0.26
0.00 0.26 0.55

1.00 0.48 0.57
0.48 0.30 0.30
0.57 0.30 0.40

0.30 0.33 0.15
0.33 0.40 0.13
0.15 0.13 0.17

C nugget

sph

sph

 
 = + 
  
− − 

 − + 
 − 

− − 
 − 
 − 

h

h

h

 (7)

Where the first spherical structure persists for 16.0 meters 
in the range, while the second continues up to 34.0 meters.

5.2 Stochastic analyses

Three assembled configurations were applied to the case 
study. First, a probabilistic analysis was performed using the 
original RFEM approach, accordingly with the common seen 
applications. Second, a new assessment was performed but 
applying the sRFEM (incorporating the TBCOSIM technique) 
with no conditional data (unconditional simulation). Finally, 
the third configuration was similar to the second, but this time 
the conditioning data of the boreholes close to the simulation 
section were considered (conditional simulation).

For the conditional simulation, only the highlighted 
boreholes were assumed as conditioning data, specifically 
its perpendicular projections on the section plane, see 
Figure 2 and Figure 3. The conditional simulation did not 
consider other boreholes because they were distant from this 
section, differing from the approach assumed by the cited 
reference. However, all boreholes were used to determine 
the statistical information.

All configurations assumed the statistical information 
presented in Table 1, considering the declustering method. 
In addition, configurations performed 2,000 realizations 
each, but this amount would increase as needed.

Replicating the reference, the log-normal distribution 
type describes all the probability density functions (PDFs) of 
the random variables. However, the correlation length and the 
correlation matrix were based on the results of the structural 
analysis, Figure 4. The correlation length was 34.0 meters 
(range of the variograms), and the correlation matrix (sills 
of the variograms) was as Equation 8.

( )
1 0.81 0.72

0.81 1 0.43
0.72 0.43 1

C
− − 

 = − 
 − 

h  (8)

Conversely, the other configurations used the 
transformation tables and the theoretical coregionalization 
function (Equation 7). For the conditional simulation, third 
configuration, the ordinary cokriging technique was selected 
to condition the simulated fields to the known data.

5.3 Spatial covariance reproduction

The first question that arises from the application of 
a geostatistical simulation is whether it complies with the 
reproduction of the spatial covariance model. A simple 
procedure to assess this condition is to analyze the experimental 
variograms generated by the simulations and compare them 
with the input model.

Figure 5 presents this evaluation for the second 
configuration (unconditional simulation using the sRFEM). 
Note that for each realization, the experimental variograms 
change, moving away from or closer to the theoretical model 
(cloud of simulation). However, when analyzing the average 
experimental variograms, they should agree with the theoretical 
coregionalization model. Therefore, the unconditional 
simulation via sRFEM satisfactorily reproduces the spatial 
covariance model as the average variograms, both simple 
and crossed, agree with the input model.

Figure 6 shows a comparison of the average variograms 
for all configurations and the theoretical coregionalization 
model. The first configuration, using the original RFEM, could 
not correctly reproduce the model of spatial covariance. Note 
that the generated variograms resulted in a lower covariance 
between the equispaced points compared with the theoretical 
model. Then, this condition can implicate in a random field 
with a lower variance when compared to the real one, leading 
to a non-conservative analysis. Despite not adhering to the 
theoretical structure behavior, the major contribution to the 
observed discrepancy is related to the nugget effect, which 
is ignored in this configuration (null nugget effect, with 
variograms starting from origin).

Otherwise, as previously mentioned, the unconditional 
simulation via sRFEM successfully reproduced the theoretical 
model. However, when analyzing the conditional simulation, 
note that a disturbance occurs for simple variograms. 
The agreement is hardly supported by conditional simulations. 
There are some reasons for this “disagreement”. The primary 
reason is that the conditioning data does not perfectly fit 
the theoretical model assumed for the simulation, as can 
be seen in Figure 4. In other words, the known data in the 
field introduce a certain “distortion” regarding the input or 
fitted model. Despite this effect, the cross-variograms for 
the conditional simulation were satisfactorily in accordance 
with the prior model.



Belo et al.

Belo et al., Soil. Rocks, São Paulo, 2022 45(4):e2022076121 9

A section simulated example is shown in Figure 7. 
It illustrates the first realization of the conditional random 

field for the case study. In addition, the displaced FE mesh 
was jointly presented.

Figure 4. Fitting of sample variograms by theoretical nested structures - simple variograms (top) and cross-variograms (down).

Figure 5. Comparison between the average experimental and the theoretical variograms for the unconditional simulation.
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5.4 Failure assessment

After performing the simulations, the MCS technique 
was jointly used to define the probability of failure ( fP ) of 
the geotechnical structure. The stability analysis was carried 
out using the approach incorporated by the RFEM (the 
strength reduction method), with some adaptations, such 
as mentioned in the item 4. As the stability analyses were 
performed, the fP  was monitored, allowing the investigation 
of its convergence, as shown in Figure 8. A failure event is 
defined to occur when the factor of safety (FoS ) is less than 
the unit ( 1FoS < ).

Storing the FoS for each realization also grants the 
investigation of its ensemble (PDF), as shown in Figure 8. 
Note that both the convergence of the fP  and the ensemble 
for the FoS were analyzed for the three configurations.

A deterministic stability analysis of this structure, using only 
the mean values presented in Table 1 (with declustering), resulted 
in the ü  equal to 1.56. In agreement with this deterministic 
result, the PDFs for FoS of the three configurations have the 
peak of their distributions around this value, and very close 
to the value presented by Johari & Fooladi (2020). However, 
the distributions showed different behaviors between them, 
mainly regarding the variance and the behavior of the upper 

Figure 7. Simulation section of a conditional realization using the sRFEM, representing the displaced FE mesh and the random field in 
terms of the cohesion parameter.

Figure 6. Comparison between the average experimental and theoretical variograms using three methods – Original RFEM, unconditional 
and conditional using sRFEM.
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Figure 8. Convergence of the probability of failure and PDF of the factor of safety (FoS) through each method.

and lower tails. The first approach (using the original RFEM) 
led to a lower variance compared to both unconditional and 
conditional analysis using the sRFEM. In addition, the fP  for 
first approach was lower than the second one (around 0.003% 
and 0.017%, respectively), as expected when examining their 
distributions. The fP  for the first configuration was obtained 
from an MCS with 5 × 105 realizations, because of its lower 
value, while 105 simulations were assumed for the second and 
the third approaches.

In contrast to previous work exploring conditional 
simulations for this purpose, the conditional simulation 
(third configuration, using the sRFEM) led to a higher fP  
compared with previous configurations (around 0.047%). 
A PDF analysis reaffirms this result, because the lower tail 
distribution for the conditional simulation presents a slightly 
larger area (for 1FoS < ) than the unconditional one. In addition, 
the conditional approach also showed a marginally higher 
variance than the unconditional simulation. Usually, these 
results are unexpected because conditional simulations are 
used to reduce the uncertainties about the field variance. 
However, in this case study, this “unanticipated” condition 
can occur for a few reasons:

• as previously mentioned, conditional data are used 
to introduce a disturbance to the coregionalization 
model, which can be seen in Figure 6 mainly for the 
simple variograms. Then, note that this effect, in this 
case, shifted the simple variograms to higher values, 
so for the same lag vector between any two points, 
the variance is higher for the conditional than for 
the unconditional simulation;

• since the geostatistical parameters were defined 
based on all available data (three-dimensional field), 
the data in the simulated section may have a slight 
discrepancy regarding the generalized covariance 
model, e.g., conditioning data presents higher variance 

than the entire set of data regarding the investigated 
field;

• the behavior close to the origin of the spatial 
covariance models has a substantial influence in 
the final simulated variances. High nugget effects 
lead to higher variances in results. If the definition 
of this behavior is not well-founded, it may produce 
loss of efficiency of the kriging techniques, and the 
computed variance may be inaccurate. This effect has 
even more serious consequences for the conditional 
simulations, which aim to reproduce the variability 
in greater detail (Chilès & Delfiner, 2012);

• all the conditioning data assumed for the simulated 
section (boreholes 8, 9, 14 and 15) have values for 
the friction angle parameter lower than the mean 
value for the entire investigated field. Then, it can 
lead the conditional strength to a reduced average 
in lower tail realizations;

• perhaps, the number of investigations (boreholes) or 
points with known data was not enough to reduce 
the uncertainty level, as explored and presented by 
Yang et al. (2019).

In the meantime, it is worth mentioning that the PDF, 
for the conditional simulation, around the peak (close to the 
mean value of FoS) has a bottleneck format. It suggests that 
realizations around the mean values granted a lower variance 
than the peripheral ones.

6. Conclusion

This paper addressed the correct reproduction of the 
spatial coregionalization model and investigated the effects 
regarding this reproduction for probabilistic analysis of 
geotechnical structures. For this, it uses geostatistical concepts 
and advanced techniques (TBCOSIM) jointly with the most 
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reliable and applied approach presented in the literature to deal 
with random fields associated with the FEM (RFEM). Based 
on the results for the illustrative case study, the following 
conclusions can be drawn:

• Determining the simple and cross-variograms, 
for the sample data and the fitting theoretical 
coregionalization function, is an important task in 
geostatistical treatments, hence also in a probabilistic 
analysis of geotechnical structures;

• The spatial covariance reproduction when using 
the sRFEM satisfactorily agrees with the input 
coregionalization model. The average variograms of 
the unconditional simulation almost perfectly agree 
with the theoretical ones, while the conditional one 
presents a small shifting factor of the variograms 
upwards (higher values of variance), since the 
known data rarely agree precisely with the “fitting” 
model. Otherwise, the original RFEM, as a common 
approach, failed in this reproduction, leading to lower 
variances than the sRFEM. Therefore, the RFEM 
would present a non-conservative design for this 
structure, resulting in an expressive low fP , which 
may be a consequence of the failure in reproducing 
the spatial variability, for this case;

• Neglecting the investigation distribution in the field 
may lead to bias statistical information about it. The 
declustering technique is an important tool to deal 
with clustered investigations, often seen in practice;

• Disregarding the nugget effect, simulations cannot 
characterize the local uncertainty (e.g., uncertainties 
regarding measurements, equipment, tests, correlation 
formulas, and other sources). It affects the reproduction 
of the coregionalization model, hence may lead the 
analysis to biased results;

• Although previous studies often associating the 
conditional simulation with lower variances and 
probability of failure, this “expected” condition was 
not observed for this case study. This is because of 
some factors presented at the end of Section 5.4;

• Depending on amount and location of the conditioning 
data, jointly with the geostatistical structures, conditional 
simulations may not offer a meaningful reduction in 
the simulation’s variance. However, the result may 
be considered more reliable than before, e.g., in 
the study case, since the values of the conditioning 
strength parameters around the section were lower 
than the mean value for the field (entire set), the peak 
value of FoS for the conditional simulation became 
lower than the peak value for the unconditional one;

• Incorporating the TBCOSIM into the RFEM produces 
an improved and efficient approach to deal with 
probabilistic analysis of geotechnical structures, 
complying with the spatial correlation structures of 
soil properties, which comprise them.
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List of symbols

a Spatial correlation range in the field
ax Horizontal correlation range in the field
ay Vertical correlation range in the field
BH Borehole
c Cohesion
C Sill of the variogram
C(h) Correlation function
COSGS Sequential Gaussian Co-simulation
CoV Coefficient of variation
CRF Conditional Random Field
E Young’s modulus
FE Finite element
FEM Finite Element Method
FoS Factor of safety
GSLIB Geostatistical Software Library
h Spatial lag between two points in the field
hx Horizontal lag between two points in the field
hy Vertical lag between two points in the field
KLE Karhunen-Loève Expasion
LAS Local Average Subdivision
LEM Limit Equilibrium Method
MA Moving Average Method
MCS Monte Carlo simulation
MD Matrix Decomposition Method
N North
p Expected order for the probability of failure
PDF Probability Density Function
Pf Probability of failure
RFEM Random Finite Element Method
RFT Random Field Theory
RVT Regionalized Variables Theory
SGS Sequential Gaussian Simulation
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SM Spectral Method
sph Spherical function
sRFEM Sophisticated Random Finite Element Method
SRM Strength Reduction Method
TBCOSIM Turning Bands Co-simulation
TBS Turning Bands Simulation
x Point in the field
Z(x) Value of the random variable for a point in the field
Zcc Value of the random variable in the conditional  
 random field
Zci Value of the random variable in the unconditional  
 random field
Zkc Value of the random variable in the kriging field  
 based on the sample data
Zki Value of the random variable in the kriging field  
 based on the simulated unconditional data  
 replacing known data
β Reliability index
ϕ Friction angle
γ Unit weight
γ(h) Simple variogram function
γ12(h) Cross-variogram function
μ Mean
ν Poisson’s ratio
σ Standard deviation
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