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1. Introduction

Landslide disaster prevention involves forecasting 
landslides enough time in advance to allow for actions to be 
taken towards reducing the possible damages. This prediction 
can be made in spatial or temporal terms (Intrieri et al., 2019). 
A spatial prediction relates the distribution of previous and 
potential landslides with the frequency of those events in 
the past. One of the most important products of this type of 
prediction for disaster prevention is the susceptibility maps, 
developed with computational models, such as SHALSTAB, 
TRIGRS, among others, as in Melo et al. (2021) and Craig 
& Augusto Filho (2020).

A temporal prediction is related to time of failure 
determination methods. For a regional scale prediction, 
rainfall monitoring is commonly used, as in Bandeira & 
Coutinho (2015), whereas slope scale prediction focuses 
on geotechnical instrumentation monitoring. As stated by 
Intrieri et al. (2019), a traditional and reliable approach for 

landslide early warning is to monitor slope displacement 
and to analyze its derivatives (velocity and acceleration). 
The most used method to forecast the time of failure was 
developed by Fukuzono (1985), who defined a linear 
relationship between the time of failure and the inverse of 
velocity: failure moment can be inferred when that value 
approximates to zero. This method has been largely applied 
as detailed by Intrieri et al. (2019).

Regarding the monitoring issue, Yin et al. (2010), 
Stähli et al. (2015) and Askarinejad & Springman (2017) 
emphasized the need of using remote real time, high resolution 
and automatized sensors, considering failure can happen at 
high speed and pre-failure signals can be measured only a 
short time before rupture. Askarinejad et al. (2018) identified 
previous signals in a real scale landslide simulation experiment 
2.5 h before failure happened (accelerating increase of 
horizontal pressure) and more significantly 23 min before 
failure for surface displacements and 30 min before for 
subsurface deformations. Because the precursors detection 
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depends on the measurement resolution and the type of the 
employed sensors, as well as on the triggering mechanism 
and the material type, it is important to perform experiments 
in controlled conditions to analyze whether monitoring 
sensors can identify pre-failure signals with sufficient time 
for actions to be taken.

In this sense, accelerometers are promising devices 
for landslide early detection. Technological developments 
have allowed manufacturing these sensors at lower costs 
allowing remote monitoring. Previous papers describe the 
use of accelerometers for landslide precursor detection and 
characterization purposes, such as Arnhardt et al. (2007), 
Azzam et al. (2010), De Dios et al. (2009), Segalini & Carini 
(2013), Ooi et al. (2014), Uchimura et al. (2015), Khoa et al. 
(2017), Giri et al. (2018), Dikshit & Satyam (2019), Ruzza et al. 
(2020), Sheikh et al. (2021) and Towhata et al. (2021).

Arnhardt et al. (2007) and Azzam et al. (2010) suggest 
implementing accelerometers in a rockslide EWS, however, 
they do not present results from this instrumentation. 
De Dios et al. (2009) tested in laboratory conditions a column 
sensor built with triaxial accelerometers buried for slope 
tilt measurements, similar to those developed by Segalini 
& Carini (2013). Like Giri et al. (2018), Ooi et al. (2014) 
monitored soil movements with accelerometers associated 
with gyroscopes to measure translational and rotational 
components in landslides simulated in a flume. Giri et al. 
(2018) also proposed a criterion to establish slow and rapid 
translational landslides and identify failure types through 
sensor readings. Khoa et al. (2017) used experimentally 
triaxial accelerometers to calculate slope angles and classify 
three types of movement: collision, slide down and rolling 
down. Ruzza et al. (2020) developed a low-cost pipe for 
tilt measurements built with an arrangement of triaxial 
accelerometers, similar to De Dios et al. (2009) and Segalini & 
Carini (2013). The instrument performance was successfully 
checked in laboratory experiments.

Literature review suggests that there is no consensus yet 
on how to employ accelerometers for landslide monitoring. 
Some works focused on using accelerometers associated 
with other sensors to characterize landslides qualitatively 
and to better understand the movement itself, like Ooi et al. 
(2014), Khoa et al. (2017) and Giri et al. (2018), whereas 
other authors used accelerometers in a similar fashion as 
inclinometers (De Dios et al., 2009; Segalini & Carini, 2013; 
Ruzza et al., 2020). Uchimura et al. (2015) developed an 
EWS based on tiltmeters, which are, in principle, dampened 
accelerometers, and tilting variation, mostly being used in 
Asian countries recently, as in Dikshit & Satyam (2019), 
Sheikh et al. (2021) and Towhata et al. (2021).

These previous works confirmed that accelerometers 
are strong instruments for geotechnical monitoring, mainly 
to monitor changes in slope tilt and to qualify failure types. 
Since there is no consensus in how to deploy and use 
accelerometers, it is crucial to validate their use in laboratory 
conditions before deploying them in real conditions. This 

has been accomplished in the research presented here by 
simulating landslides in a flume, similar to what was done 
by other researchers with different sensors (Fukuzono, 1985; 
Ooi et al., 2014; Uchimura et al., 2015; Giri et al., 2018; 
Franco et al., 2019).

The main objective of this paper is to disclose the results 
obtained using low-cost biaxial accelerometers to identify 
pre-failure signals in a landslide simulated in a small-scale 
tilting flume experiment, where failure was triggered by 
percolating water into sandy soil, in a 30º slope. The overall 
performance of the low-cost accelerometers in detecting 
failure precursors is presented and discussed.

2. Experimental setup

2.1 Landslide flume

In this research, the results from one landslide simulated 
using a flume are presented. The glass side of the flume 
allows soil observation during the experiments. The flume 
is 1.60 m long, 0.5 m wide and 0.5 m deep and can be tilted 
up to 45° with a hydraulic jack (Figure 1). Three sections, 
namely “Upper part”, “Intermediate part” and “Lower 
part”, are indicated in this figure. Those terms will be used 
in this paper to explain the position of the sensors during 
the experiments. However, there are no internal divisions 
in the flume.

A perforated water hose was deployed at the base of 
the flume, to allow water percolation at the base of the soil 
sample. The water hose was covered with geosynthetic in 
order to minimize internal soil erosion.

Figure 1. Tilting flume used for landslide simulation experiments 
and its components.
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The soil used in this research is a uniform medium 
sand, with a mean particle diameter of 0.27 mm composed 
by 96% silica. Soil parameters are: D10 = 0.16 mm, D30 = 
0.22 mm, D60 = 0.30 mm, emax = 0.92, emin = 0.70, γd,max = 
15.30 kN/m3, γd,min = 13.54 kN/m3 and G = 2.65. According 
to the Unified Soil Classification System (USCS), the soil is 
classified as poorly graded sand, with uniformity coefficient 
of 1.90. The internal friction angle of soil is equal to 31º and 
cohesion is 0 kPa. They were determined using direct shear 
tests performed with dry soil and normal stresses ranging 
from 10 to 80 kPa. 30% of total dry soil volume was dyed 
with black waterproof ink (brand Indian Ink Talens), to 
enhance particle contrast for PIV analysis.

2.2 Landslide simulation experiment

The sample for the landslide simulation experiment 
was prepared according to the following steps:

1. The flume was filled in horizontal position with 0.3 
m height of dry sandy soil, compacted with a wooden 
hammer in six layers at its maximum dry density;

2. Water supply was switched on to partially saturate 
the soil. The water supply was switched off when 
75% of the soil’s height (from bottom to top) was 
saturated;

3. A slope of 30º was excavated in the lower part of 
the flume;

4. Camera support was attached to the intermediate 
part;

5. The lowest door was opened, and the flume was 
tilted to 30°;

6. Water supply was brought back;
7. Acceleration data and picture acquisitions started 

simultaneously. This is considered time zero of the 
experiment (t = 0). During the experiment, the lowest 

door was kept open, to allow soil to freely move 
down the flume. The experiment was performed at 
constant water flow of 4.4 L/min.

2.3 Instrumentation

Accelerometers were used for soil monitoring during 
the experiment. Five micro-electrical-mechanical-system 
(MEMS) accelerometers (ADXL-321, Analog Devices) 
were embedded into the soil during the model preparation 
phase. These accelerometers are biaxial (axes are called in 
this paper u and v). According to the manufacturer, their main 
characteristics are: measurement rate of +/- 18 g, bandwidth 
from 0 to 100 Hz and typical resolution values of 3 mg at 
50 Hz. Accelerometers were encapsulated in aluminum 
alloy square boxes of 2.5 cm width and 1.0 cm height. Data 
were transmitted through 3 mm diameter flexible cables to a 
datalogger connected to a computer. Devices were positioned 
with the u axis parallel to the main movement direction and 
v perpendicular to u (Figure 2). Five accelerometers were 
embedded into the soil (numbers 1 to 5) and one accelerometer 
(number 6) was fixed on the external side of the steel wall. 
Therefore, accelerometer n. 6 was used as a benchmark of 
no soil movement.

2.4 PIV setup

The camera support is made of steel bars that can be 
bolted in the intermediate and upper parts and can be removed 
during sample preparation. Two LED reflectors are attached to 
the support and the room is darkened during the experiment, 
in order to keep the light supply constant. The camera used 
in this research is a Canon EOS Rebel T3i, with 18 MPx 
resolution, 35 mm of focal length, 1/5 s exposure time and 
maximum acquisition rate of 1 frame every 5 seconds.

Figure 2. Sensors and PIV ROI positions during the experiment.
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3. Data processing

3.1 Acceleration data processing procedure

Acceleration was measured in two directions and the 
resultant acceleration was calculated from those values. Analyzing 
resultant and components separately gives information about 
how the device moved during the experiment. Two types of 
movement can be identified by this analysis: in the first type, 
if the resultant acceleration remains constant with magnitude 
equals to 1 g, the gravity acceleration on Earth magnitude, 
it was assumed that no movement or negligible movement 
happened along the plane defined by accelerometer’s u 
and v axes. In this case, although the resultant is constant, 
concomitant accelerations may happen in both components, 
indicating that the device had pitched. On the contrary, with 
decreasing resultant acceleration, it was considered that the 
device rotated around u or v axes, or achieved post-failure 
high acceleration translational movement. Therefore, focusing 
on the pre-failure period, it is considered that the device 
had rolled (rotated around u) or yawned (rotated around v).

Data were acquired at 4 kHz aiming to identify high 
frequency impulsive signal, which were supposed to be 
generated in crack formation, and also low frequency signal 
related to slow soil movement. First, raw data were analyzed 
for impulsive acceleration signals identification. After that, 
two Python routine codes were developed and employed 
to process accelerometer low frequency signal content and 
estimate landslide translational velocity from acceleration. 
The first one corresponds to filtering of acceleration data 
in time domain and aims to clear possible data outliers and 
high frequency noise. At this stage, a 4th order Butterworth 
filter was applied, with cutoff frequency of 1 Hz. Processed 
signals were analyzed for the identification of features that 
could be indicative of impending failure.

The second routine code was used to calculate the 
translational velocity from acceleration, by integrating 
the acceleration over time. Although it may seem like a 
simple procedure, it is necessary to admit that even when 
there is no soil movement, acceleration is measured. This 
acceleration is related to the Earth gravity acceleration 
projection on each accelerometer axis. Therefore, to 
calculate velocity, it was necessary to first remove gravity 
acceleration effects from measured accelerations. Hence, raw 
data were submitted to two processing steps: one to clear 
outliers, by using the same Butterworth filter aforementioned 
(the output of this step was called “filtered data”) and 
another one for gravity offset removal, by applying a  
10 s centralized window moving average filter on the “filtered 
data” (output of this step was called “smoothed data”) and 
subtracting it from filtered data. Finally, the result was 
integrated to estimate the translational movement velocity.

To employ this translational velocity estimation 
procedure, it must be assumed that the small amplitude of the 
accelerometer’s initial movement happened approximately 

along the plane defined by u and v axes. When failure happens, 
accelerometers can rotate about u and v and this assumption 
is no longer valid.

Angular position over time was also calculated from 
smoothed data accelerations in u and v directions, following 
Equations 1 and 2:

( )180 arcsin aus
uθ π

⋅
=  (1)

( )180 arccos avs
vθ π

⋅
=  (2)

where uθ  and vθ  are estimations of the accelerometer angular 
position, in degrees, based on smoothed data accelerations 

usa  (in u direction) and vsa  (in v direction). Note that uθ  and 
vθ  are equal and correspond exactly to the accelerometer 

angular position if the plane defined by u and v axes is 
perfectly vertical and the accelerometer is at rest (behaving 
as an inclinometer).

3.2 PIV data processing procedure

The Particle Image Velocimetry (PIV) is a velocimetry 
technique developed for experimental fluid mechanics, 
using double-flash photography of a seeded flow (Adrian, 
1991). According to Take (2015), from the late 1990s 
onwards researchers became aware that this technique was 
also well-suited for geotechnical engineering applications. 
Many geotechnical processes such as collapse of shallow 
foundations or landslides triggering involve granular flow 
and can, therefore, take advantage of the technique.

Since then, PIV has been widely used in laboratory 
experiments (Take et al., 2004; Baba & Peth, 2012; 
Franco et al., 2019) or in field experiments (Akca 2013; 
Askarinejad et al., 2018). Previous works show that results 
from PIV technique are similar to those achieved with in situ 
instruments. Although the values are not exactly the same, 
good agreement in order of magnitude and rates of change 
is observed (Askarinejad, 2013; Pei et al., 2019).

In this research, PIV Lab®, a free Matlab tool, developed 
by Thielicke (2020), was used for PIV analysis. Figure 2 shows 
the region of interest (ROI) defined to perform the analysis 
in experiment. Before choosing this ROI, some tests were 
performed with different ROI sizes. However, the results 
did not show any significant difference.

4. Results

4.1 Soil movement and acceleration results

Figure 3 shows schematically and illustrates with pictures 
the main experiment events. Landslide happened in a unique 
event, although a soil block developed during the experiment, but 
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remained in the same position until general failure happened. At  
5 s, cracks started to develop in the intermediate part, defining 
a block (Figure 3a) where accelerometers n. 3 and n. 4 were 
embedded. From 45 s to 65 s (Figure 3b and Figure 3c), 
the block moved and remained in that position until failure 
happened at 81 s (Figure 3d). At the end of the experiment, 
part of the soil and all accelerometers fell out of the flume.

Figures 4 and 5 show the experiment acceleration results 
in u and v directions respectively and Figure 6 presents the 
calculated resultant acceleration. Benchmark acceleration 
is shown in black.

The collected acceleration data were primarily analyzed 
for the identification of impulsive signal features. Since 
none of such features could be detected, acceleration results 
presented in this section focus on low frequency content of 
those signals. Table 1 summarizes the results achieved with 
the five accelerometers embedded in the soil.

Figure 3. Schematic movement evolution during experiment: (a) time = 5 s: cracks started to develop in the intermediate part, defining 
a block; (b) time = 45 s: block started to move forward; (c) time = 65 s: block stopped moving and remained in the same position until 
failure; (d) time = 81 s: end of the experiment, all accelerometers fell out of the flume. Pictures were taken in the intermediate part of 
the flume.

Figure 4. Acceleration results: filtered acceleration component 
in u direction for accelerometers n. 1 (red), n. 2 (magenta), n. 3 
(cyan), n. 4 (blue), n. 5 (green) and n. 6 (benchmark, black). Block 
detachment and macroscopic failure are highlighted.
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As it can be seen in Figure 4 and Figure 5, all 
accelerometers experienced acceleration variation in both 
directions before macroscopic failure happened, in agreement 
with macroscopic observations. Table 1 shows the time when 
each device measured acceleration variation and also the 
magnitude of acceleration variations.

Accelerometers n. 1, n. 2 and n. 5 presented a similar 
behavior: acceleration started to increase in u direction and 

Figure 5. Acceleration results: filtered acceleration component 
in v direction for accelerometers n. 1 (red), n. 2 (magenta), n. 3 
(cyan), n. 4 (blue), n. 5 (green) and n. 6 (benchmark, black). Block 
detachment and macroscopic failure are highlighted.

Figure 6. Resultant acceleration calculated for accelerometers n. 1 
(red), n. 2 (magenta), n. 3 (cyan), n. 4 (blue), n. 5 (green) and n.6 
(benchmark, black). Macroscopic failure is highlighted.

Table 1. Summary of acceleration variation and angular responses.

Acc.

Failure 
or Block 

detachment 
time (s)

Acceleration 
variation 

start time in 
component (s)

Difference in 
time between 

failure and 
first signal (s)

Acceleration variation (g) Angular variation (º)

u direction v direction u direction v direction

1 81 5 66 0.130 0.082 9 9
2 81 15 76 0.022 0.014 1.5 1.5
3 45 5 40 0.260 0.290 20 20
4 45 5 40 0.200 0.150 13 13
5 81 5 76 0.025 0.010 1.5 1.5

decrease in v direction until macroscopic failure happened. 
Accelerometers n. 1 and n. 5 started to identify this behavior at 
5 s whilst accelerometer n. 2, at 15 s, indicating that from this 
time onwards accelerometers started to pitch. Accelerometer 
n. 1 presented variation at 10-1 g, whilst accelerometers n. 
2 and n. 5 at 10-2 g.

Accelerometers n. 3 and n. 4, located in the intermediate 
part of the flume, also identified acceleration variation related 
to block detachment. Both accelerometers started to measure 
acceleration variation at 5 s, indicating pitching movement, 
that was more pronounced between 40 s and 55 s, when 
block detachment happened. Resultant acceleration variation 
observed in both accelerometers is related to block detachment 
and indicates rolling or yawning movements because resultant 
acceleration decreased. After 60 s and before macroscopic 
failure happened, at 81 s, both accelerometers experienced 
deceleration, suggesting that deceleration do not necessarily 
imply in stabilization. Accelerometers n. 3 and n. 4 presented 
variation at 10-1 g.

Resultant accelerations showed in Figure 6 indicate that 
accelerometers n. 3 and n. 4 experienced rotation (rolling or 
yawning) from 30 s and 40 s onwards respectively whereas 
the other accelerometer’s resultant acceleration remained 
constant at 1 g, suggesting that those sensors did not rotate 
about u or v directions until failure happened at 81 s.

4.2 Translational velocity estimation

PIV analysis was run with PIV Lab® Matlab tool. The tool 
compares subsequent images from the same ROI and tracks the 
same pixels in each image to calculate velocity during the time 
elapsed between those images. The first pair of images that was 
analyzed are images from 0 s and 5 s. Hence, the result obtained 
from those images is considered the velocity calculated at  
t = 5 s. In cases where it is not possible to find the same pixel, 
velocity vectors are interpolated from surrounding information.

In this research, velocity up to 30 s of the experiment 
was calculated, as can be seen in Figure 7. From this time 
onwards analysis was considered unreliable since the quantity 
of interpolated vectors increased significantly as a result of the 
low picture acquisition rate. Also, estimated velocity remained 
constant which is not consistent with the movement observed. 
Up to 30 s, PIV calculated velocities ranged from 6.0×10-4 to 
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qualitatively define the type of soil movement. By analyzing 
how angular variation occurred, together with other sensors, 
they indicate if the movement was rotational or translational. 
However, they did not focus their research on evaluating if the 
sensors were able to measure variations before rupture happened.

5. Discussion

A traditional approach for landslide early warning is 
to monitor slope deformations and to analyze movement 
velocity increase, as defined by Fukuzono (1985). Xu et al. 
(2011) calculated soil velocity and acceleration based on 
displacement data, proposing a criterion to analyze acceleration 
increase and establish acceleration threshold values for the 
development of an EWS.

Figure 7. PIV Lab graphics output for u (A and B) and v directions (C and D). Figures A and C are for t=5 s and B and D for t=30 s.

Figure 8. Angle variation calculated for accelerometers n. 1 (red), n. 
2 (magenta), n. 3 (cyan), n. 4 (blue), n. 5 (green) and n. 6 (benchmark, 
black). Macroscopic failure and block detachment are highlighted.

1.2×10-3 m/s in u direction and from 3.0×10-5 to 4.0×10-4 m/s 
in v direction. This reveals that the simulated landslides were 
rapid to very rapid according to Hungr et al. (2014).

Unfortunately, translational velocities calculated from 
accelerometers data resulted in inconsistent results compared 
to those obtained using the PIV method. Moreover, the 
benchmark accelerometer remained still during the tests, 
but the processing procedure estimated velocity fluctuations 
between 0 and 10-3 m/s, although the mean value consistently 
remained around zero for this sensor. These aspects revealed 
that the data processing presented in Section 3 did not remove 
completely the gravity effects on moving accelerometers, 
probably due to a correlation between translational and rotational 
movements (and similarity in their frequency content), and to 
the accelerometer sensitivity to external noise being too high 
concerning velocity quantification. Nevertheless, the angular 
position calculation procedure was robust, as presented below.

4.3 Angular position variation in time

Figure 8 shows the angular position variation calculated, 
which is also presented for each accelerometer in Table 1. 
Results indicate that angular position started to change before 
block detachment and general failure happened, showing 
similar results to those of acceleration trends. Because the 
magnitude of the angle variation is the same for both axes, 
only the results of u direction angle position are presented.

The angular variation results corroborate the results 
observed with the acceleration variation: the devices measured 
angular variations that indicate progressive microscopic 
movements, although at macroscopic scale no remarkable 
observations could be made for the same time intervals.

Previous works, such as Ooi et al. (2014), Khoa et al. 
(2017) and Giri et al. (2018), used this angular variation to 
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This research aimed at measuring the acceleration 
directly, although it was not possible to identify resultant 
acceleration increase in any sensor during the pre-failure 
period. As explained in the previous section, velocities 
calculated from acceleration measurements were not consistent 
compared to those obtained based on PIV method, indicating 
that the data processing procedure did not succeed in terms 
of gravity offset removal. As gravity acceleration is many 
orders of magnitude higher than the movement acceleration, 
this could not be quantified. This implies that the proposed 
measuring and processing method is not capable of indicating 
an increase in acceleration in the same sense as Xu et al. (2011).

Nevertheless, when analyzing u and v components 
separately, in all cases, acceleration variations can be 
interpreted as pre-failure signals. Those signals measured in 
each component are related to small scale movement rather 
than to the macroscopic failure movement and they imply 
that the sensors are pitching prior to macroscopic failure. 
Macroscopically, it is not always possible to observe the 
whole soil massif moving, however, movement is happening 
in particle scale and accelerometers were able to capture 
these movements.

Different acceleration trends observed in each device 
confirm that, for slope monitoring, it is highly important to 
work with a sensor network, since different parts of the slope 
may have different behaviors. The importance of monitoring 
networks has been demonstrated by Arnhardt et al. (2007), 
Azzam et al. (2010), Ramesh (2014), Li et al. (2016), 
Giordan et al. (2019), among others.

Furthermore, it was observed that at particle scale 
the soil may experience rotation (pitching), even though at 
macroscopic scale the movement was a translational landslide. 
This indicates that an Inertial Measurement Unit (IMU) could 
be used in order to detect both translational and rotational 
movements. On the other hand, IMU’s long-term stability 
and energy consumption are factors to be considered.

The angular variation observed in the experiment has 
a progressive growth trend, which predates the landslide 
and can be interpreted in a similar way as proposed by 
Fukuzono (1985) for translational velocity. This is in line 
with the early warning proposal made by Uchimura et al. 
(2015) and that has been used recently in Asian countries 
(Dikshit & Satyam, 2019; Xie et al., 2020; Towhata et al., 
2021; Sheikh et al., 2021).

6. Conclusions

In this research, landslide was simulated in a tilting 
flume, where movement was triggered by tilting the slope 
and percolating water into the soil. To monitor soil behavior 
during the experiment, five low-cost accelerometers were 
embedded into the soil and images were acquired with an 
external camera.

By analyzing acceleration data, it became clear that 
accelerometers measured acceleration variations in each 

component that can be interpreted as pre-failure signals 
which indicate that, at particle scale, pitching happened, 
although no macroscopic displacement observations were 
made. In some cases, pre-failure signals were measured more 
than one minute before failure.

The well-established procedure to estimate time of failure 
from translational velocity variation in time could not be used 
in this case, because the procedure to estimate translational 
velocity from acceleration data did not work properly. This 
likely happened due to a correlation between rotational and 
translational movements of the accelerometers, leading to a 
similarity in their frequency contents that precluded gravity 
effect removal by the proposed processing procedure based 
on traditional filtering procedures.

Nevertheless, even using low-cost biaxial accelerometers, 
it was possible to quantify the angular variation during the 
experiment. The results suggest that angle variations can be 
interpreted as pre-failure signals and that landslides EWS 
could be based directly on acceleration data or on angular 
position variation trends and rates.

Since no impulsive features were detected and landslide 
movement happened at very low frequencies, in future research 
or in field deployments it is not necessary to acquire data at 
such high rates, as done in this research. Sensor resolution 
and noise sensibility were also issues concerning velocities 
quantification. However, improving sensor characteristics 
implies using more expensive accelerometers and the scope 
of the research was to test low-cost sensors, economically 
viable for large area monitoring.

For future works, it is important to test the accelerometers 
responses in slower movements. It is expected that in field 
conditions, impending failure signals may be identified 
earlier than in this research. The use of triaxial sensors is 
recommended in order to measure yawning and rolling 
movements.
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List of symbols

D10 effective grain size
D30 sieve size through which 30% (by weight) of the  
 material passes
D60 sieve size through which 60% (by weight) of the  
 material passes
emax maximum void index
emin minimum void index
γd,max maximum dry unit weight
γd,min minimum dry unit weight
G density of solids
u accelerometer axis parallel to movement main  
 direction
v accelerometer axis perpendicular to movement main  
 direction

usa  smoothed acceleration calculated in u direction
vsa  smoothed acceleration calculated in v direction
uθ  accelerometer angular position estimated in u  

 direction
vθ  accelerometer angular position estimated in v  

 direction
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