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1. Introduction

Pile foundations are responsible for transmitting loads 
from the superstructure to the ground, so that deformations do 
not affect the usage of the project. This transmission occurs 
through two mechanisms: friction (between the side of the 
pile and the ground) and reaction of the pile tip.

The bearing capacity of single pile (Qr) is defined by 
Cintra & Aoki (2010) as the sum of the maximum loads that 
can be supported by shaft and tip resistance. According to 
Fellenius (2016, 2021), a pile design based on “the bearing 
capacity is with a factor of safety of two or better, so we 
will have no settlement” is an inadequate, because the 
bothersome settlement is that caused by other factors than 
the pile loads, such as, fills, groundwater table lowering, 
neighboring structures, regional subsidence, etc.

The value of Qr can be determined based on parameters 
taken from field and laboratory testing, by means of theoretical 
and or semi-empirical methods. Given the problems in 
obtaining the ground strength to adopt theoretical methods, 
the designer often resorts to semi-empirical methods which 

use Standard Penetration Test (SPT) results to estimate the 
bearing capacity of different types of deep foundations, also 
taking into account the particular executive methods of each 
pile. Amann (2010) criticizes the indiscriminate use of such 
formulations without taking due care to the adjustments 
referring to the characteristics of the geotechnical profile 
on the development site of a specific design.

Studies developed by Maya et al. (2013), Probst et al. 
(2018), Amann et al. (2018), Carvalho & Santos (2019), 
Pereira et al. (2020), Silva (2020) indicate that there is 
high dispersion between the values of pile bearing capacity 
assessed by traditional semi-empirical methods and those 
ones obtained in dynamic and static load tests.

The static load test is an efficient way to check the bearing 
capacity of single piles assessed by using semi-empirical 
methods and, when in instrumented piles, it allows to analyze 
the load transfer mechanism from the pile to the surrounding 
soil. In the last decade several researchers have discussed the 
results of instrumentation performed on different types of 
piles (Tran et al., 2012; Seo et al., 2013; Haque et al., 2014; 
Musarra & Massad, 2015; Bohn et al., 2017; Bersan et al., 
2018; Narsavage, 2019 and Akl & Mossaad, 2021).
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Quite an alternative used to improve the prediction 
process of deep foundation behavior has been to apply Artificial 
Neural Networks (ANN). Moayedi et al. (2020) reviewed the 
literature in which they found a total of 121 articles about 
the applicability of ANN in pile bearing capacity (lateral and 
axial). Pham et al. (2020), Chen et al. (2020), Kardani et al. 
(2020), Zhang et al. (2020), Benali et al. (2018), Maizir 
(2017) and Momeni et al. (2014, 2015) applied of ANN when 
predicting the piles bearing capacity. Most ANN models 
developed in the studies estimate the bearing capacity of 
piles or the shaft bearing capacity or tip bearing capacity 
and, in most cases, for the same soil profile.

There are different types of artificial neural networks 
for solving problems in geotechnical engineering being the 
multilayer perceptrons the most used (Tizpa et al., 2015; 
Kiran et al., 2016; Dantas Neto et al., 2017; Ebtehaj et al., 
2018; Zhang et al., 2019; Darbor et al., 2019; De Granrut et al., 
2019). What makes this neural network attractive is the 
presence of hidden layers and the high degree of connectivity 
which allows it to be capable of understanding the complex 
behavior of several multivariable phenomenon in geotechnical 
engineering.

Given the applicability of multilayer perceptrons and 
the scarcity of neuron models to predict the pile shaft bearing 
capacity depending on the depth and the pile tip bearing capacity 
of different types of piles and various geotechnical profiles, and 
in order to mitigate the restrictions found in semi-empirical 
methods, the purpose of this article is to propose neuron models 
that are able to estimate the shaft and tip bearing capacities of 

single piles and even analyze the applicability of such models 
in predicting the failure load for groups of piles.

2. Materials and methods

2.1 Data collection

The first step of modeling with artificial neural networks is 
to define the variable that could influence the studied phenomenon, 
in this case the load transfer mechanism from the pile to the 
ground. This phenomenon is influenced by several factors, such 
as, for example: the pile’s geometry, type of pile, installation 
process, initial stress status of ground and the loading background 
undergone by the pile (Bohn et al., 2017; Cooke et al., 1979).

Studies such as those by Benali et al. (2018), Maizir 
(2017) and Momeni et al. (2014, 2015) who used the artificial 
neural networks to predict the pile bearing capacity were 
developed by addressing between 35 and 260 field tests 
(Standard Penetration Test, Cone Penetration Test, Pile Driving 
Analyzer, Static Load Test), the used variables being related 
only to the pile’s geometry and data take from those tests.

In this article, it was decided to use as input and output 
variables of the neuron models, developed to estimate shaft 
and tip bearing capacities of single piles, the information 
gained from results of static load tests piles, under axial 
compression effort, instrumented along the length and SPT 
boreholes. A database includes 95 single piles installed in 
different regions of Brazilian territory, as shown in Figure 1. 

Figure 1. Distribution used instrumented piles on the Brazilian territory.
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It is noted that, of the five Brazilian regions in question, the 
Southeast region concentrated the majority (72 piles), while 
the North, Midwest and South regions have the smallest 
quantities, that is, one, five and five piles, respectively.

It should be mentioned that the use of a database with 
information from different regions in Brazil and, consequently, 
installed in different geological conditions, gives the proposed 
neuron models more applicability and representativeness 
from a practical viewpoint.

2.2 Definition of neuron model variables

In this article, the output variables are the shaft and 
tip bearing capacities of single piles. To discover the input 
variables, the available information that influences the 
ground-pile interaction was fond in the database (Pham et al., 
2020; Chen et al., 2020; Benali et al., 2018; Maizir, 2017 and 
Momeni et al., 2014, 2015), and consequently, is responsible 
for mobilizing the shaft and tip bearing capacities of piles, 
namely: pile geometry (diameter and length); pile type; soil 
type; SPT test rate and type of loading applied to the static 
load test. All procedures and criteria used to define the input 
and output variables considered are described below.

2.2.1 Shaft and tip bearing capacities of pile

The shaft (Qs) and tip (Qp) bearing capacities of piles are 
provided by the instrumentation of the piles undergoing static load 
tests. It is important to emphasize that all piles were instrumented, 
97% with strain gauges installed at different levels. In addition, 
the maximum loads applied to the piles are higher than the 
failure load defined by the Brazilian Standard (ABNT, 2019).

Only in cases where the piles were not instrumented 
at the tip or had problems at this instrumented level while 
applying the loads, it was decided to extrapolate the last 
segment of the pile until reaching the tip, as shown in Figure 2. 
It is noteworthy that the extrapolations correspond to less 
than 12% of the total length of the piles.

It should be stressed that, since this is an analysis in 
terms of bearing capacity, the only results of interest are 
those corresponding to the ultimate load applied in the 
static load test.

2.2.2 Pile type

The input variable, when considering the pile type, was 
included in the models developed in two ways: the first, PT1, 
based on the classification by Velloso & Lopes (2010); and 
the second, PT2, corresponding to a proposal of the study 
herein, in which it was decided to separate pile types by their 
material (precast driven, steel and concrete piles), including 
piles with similar modeling methodologies, as in the case of 
micro-piles and root piles.

Tables 1 and 2 provided the values adopted for variables 
PT1 and PT2, respectively, used to develop the neuron models 
in this study. It was found from the analyses in these tables 
that the models proposed for predicting the shaft and tip 
bearing capacities of single piles include a large variety of 
pile types, considering the main pile construction methods 
currently adopted in Brazil and abroad (Velloso & Lopes, 
2010; Van Impe, 2003).

2.2.3 Pile geometry

In this study, pile geometry was represented by the 
diameter (D) and embedded length (Le), which directly 
influence the prediction process of the shaft and tip bearing 
capacities of piles. The diameter values of the piles used 
in developing the neuron models range from 88.9 mm to 
1200 mm, while the embedded lengths vary from 3.5 m 
to 51 m. For piles with rectangular or square sections and 
for steel piles the diameter was calculated based on the 
circumscribed area.

Figure 2. Load distributions in instrumented pile.

Table 1. Adopted values for PT1.
Pile type Value

Major displacement 1
Minor displacement 2

Substitution 3
Without displacement 4

Table 2. Adopted values for PT2.
Pile type Value

Precast concrete 1
Steel 2

Injected 3
Bored with displacement 4
Continuous flight auger 5

Bored 6
Bored with stabilizer 7
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2.2.4 Soil type

In the models estimating the shaft and tip bearing 
capacities of piles, the three variables adopted to represent 
the soil type were as follows: %Sandac; %Siltac and %Clayac. 
The definitions for such variables were based on those 
proposed by Araújo et al. (2016), who used the artificial 
neural networks to predict settlements in single piles, as 
described in Equations 1, 2 and 3.
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where, n is the number of pile sections; %Sandac, %Siltac 
and %Clayac are the factors representing the occurrence of 
accumulated layers of sand, silt and clay, respectively; ∆Le 
is the length in meters of the pile section; and ∆Lsand, ∆Lsilt 
and ∆Lclay are the lengths in meters of the sections occurring 
sand, silt and clay, respectively.
Some geotechnical profiles contain layers with marine clay 
or organic clay, and in such cases, they were considered as 
clay. Stony soils were not to be found and are, therefore, not 
considered in the neuron models developed.
For prediction models of shaft and tip bearing capacity of 
single piles, two alternatives were evaluated, as follows:

(a) Percentage values for of sandy, silty and clayey 
fractions

Three input variables were proposed to represent the 
soil type in the models that estimate shaft and tip bearing 
capacities of piles: Gsand; Gsilt and Gclay. Table 3 provided 
the values to be adopted for each one of the three variables 
according of the prevailing material type at the depth of the 
single pile tip.

(b) Values tabulated for each soil type (S)
The soil types adopted are the same proposed in the 

semi-empirical method of Aoki & Velloso (1975) and the 
values are displayed in Table 4.

For piles supported on silty organic clay the variable 
soil type was simplified as silty clay. As there were no stony 
soils present along the depth of the piles, no soil type was 
found at the tip, and for this reason it was not included in 
the developed neuron models.

It is also important to stress that no pile analyzed is 
supported or embedded in weathered or unaltered rock and 
in such cases, the models proposed herein do not apply.

2.2.5 Soil resistance index

By being aware that the shaft bearing capacity is a value 
accumulated along the length of the pile, it is understood 
that the resistance index used in models that estimate the 
value of this load must also be accumulated. As a result, the 
variable is known as NFac and obtained through Equation 4.

( )    ac eNF N L= ×∆  (4)

where, N is the number of blow counts/last 30 cm of penetration 
in a typical SPT test.

Table 3. Combinations for percentage values representing soil types 
in the models developed for estimating the tip bearing capacity.

Soil Gsand (%) Gsilt (%) Gclay (%)
Sand 100 0 0

Silty sand 60 40 0
Clayey sand 60 0 40

Clayey-silty sand 60 20 20
Silty-clay sand 60 20 20

Silt 0 100 0
Clayey silt 0 60 40
Sandy silt 40 60 0

Sandy clay silt 20 60 20
Clayey sandy silt 20 60 20

Clay 0 0 100
Sandy clay 40 0 60
Silty clay 0 40 60

Silty sandy clay 20 20 60
Sandy silt clay 20 20 60

Table 4. Adopted values for S.
Soil type Value

Sand 1
Silty sand 2

Clay-silt sand 3
Clay sand 4

Silty-clay sand 5
Silt 6

Sandy silt 7
Clay sand silt 8

Clayey silt 9
Sandy clay silt 10

Clay 11
Sandy clay 12

Silty sand clay 13
Silty clay 14

Sandy silt clay 15
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In relation to the tip bearing capacity, it was decided to 
assess three different variables, NP1, NP2 and NP3 calculated 
according to the values of the SPT (N) index. NP1 is equal 
to the N value corresponding to a layer immediately 1m 
below the tip of the pile. NP2 is the arithmetic mean of 
three (3) N values corresponding to the layer 1 m before 
the tip, the pile tip layer, and the layer 1 m below the tip. 
NP3 is the average value of N in the interval between four 
(4) diameters above the tip and one diameter below. It is 
worth mentioning that these definitions come from already 
established semi-empirical methods (Aoki & Velloso, 1975; 
Décourt & Quaresma, 1978; Teixeira, 1996).

2.2.6 Water Level (WL)

Teixeira & Albiero (1994) confirmed that saturation 
increases by around 30% the settlements and reduces the 
bored pile bearing capacity, evidencing that the variation in 
moisture alters the load transfer mechanism, and this is the 
reason why the water level was included in the neuron models 
as being the accumulated value of depth of the water level, 
based on the elevation detected in the geotechnical profile.

2.2.7 Loading Type (LT)

The instrumented piles belonging to the database 
underwent a static load test with slow loading (SML - Slow 
Maintained Load) and or quick (QML - Quick Maintained 
Load). The value of 1 was adopted to represent the SML 
loading and 2 for the QML loading, both in the models 
developed to estimate the shaft and tip bearing capacities 
of piles. Of the 95 piles studied, 56 were carried out in slow 
maintained conditions whereas 39 in quick conditions.

3. Development of the prediction model

The QNET2000 program (Vesta Services, 2000) was 
used to develop the neuron models proposed herein. This is 
a multilayer perceptron computer code that uses the error 
back propagation algorithm to correct the synaptic weights 
still in the training phase, with the artificial neurons being 
able to activate using four types of trigger functions: sigmoid, 
hyperbolic tangent, hyperbolic secant and gaussian.

It is very common when solving geotechnical problems 
to use the sigmoid or hyperbolic tangent functions, as can 
be confirmed in the studies by Dantas Neto et al. (2014), 
Araújo et al. (2015), Santiago (2018), Maizir et al. (2015), 
Momeni et al. (2015) and Nejad & Jaksa (2017). In this 
study, the neurons of all neural network layers were triggered 
using the sigmoid function (Haykin, 2008). After choosing 
the trigger function, the following must be defined: the input 
variables of each neuron model proposed; data handling, 
training, testing and validation of different architectures 
and, based on established criteria, the configuration with 
the best performance.

3.1 Combinations of variables

Nine (9) input variables were adopted for neuron models 
that estimate the shaft bearing capacity: D, NFac, WL, PT1, 
PT2, %Sandac, %Siltac, %Clayac and LT. The combinations 
with those input variables are:

● MQS1: ( ) ,  ,  S acQ f D NF WL=

● MQS2: ( ) ,  ,  ,  1S acQ f D NF WL PT=

● MQS3: ( ) ,  ,  ,  2S acQ f D NF WL PT=
● MQS4: ( ) ,  ,  ,  2,% ,% ,%S ac ac ac acQ f D NF WL PT Sand Silt Clay=

● MQS5: ( ) ,  ,  ,  2,% ,% ,% ,  S ac ac ac acQ f D NF WL PT Sand Silt Clay LT=

It is noticeable that the construction of these models 
began in the simplest manner (MQS1) with only three (3) 
variables, gradually adding more input variables until reaching 
the more complex models containing eight (8) input variables 
(MQS5). It was therefore possible to separately assess the 
influence of each input variable in the obtained results.

In the neuron models that estimate the tip bearing 
capacity, the input variables are: D, PT1, PT2, Gsand, Gsilt, 
Gclay, S, NP1, NP2, NP3, WL and LT. The combinations with 
these input variables are:

● MQP1: ( )  ,  1PQ f D NP=
● MQP2: ( )  ,  2PQ f D NP=
● MQP3: ( )  ,  3PQ f D NP=
● MQP4: ( )  ,  1,  1PQ f D NP PT=
● MQP5: ( )  ,  1,  2PQ f D NP PT=
● MQP6: ( )  ,  1,  2,  PQ f D NP PT S=

● MQP7: ( )  ,  1,  2,  ,  ,  P sand silt clayQ f D NP PT G G G=

● MQP8: ( )  ,  1,  2,  PQ f D NP PT WL=

● MQP9: ( )  ,  1,  2,  PQ f D NP PT LT=
The models were created in the same way as the neuron 

models developed to estimate the shaft bearing capacity.

3.2 Data handling

The sigmoid function, chosen as a trigger function for 
the developed models, has the benefits of being continuous and 
distinguishable through its domain, enabling the application of 
the generalized delta rule (Widrow & Hoff, 1960) to modify 
synaptic weights. However, its use requires standardizing 
the values of output variables in an interval belonging to its 
image set, in this case, the interval (0.1).

Therefore, both output and input variables were 
standardized by linear interpolation between the values 
0.15 and 0.85 and the maximum and minimum values of 
each of these variables.

3.3 Training, testing and validation

The purpose of the RNA training phase is to adjust in 
the best possible way the values of the synaptic weights, so 
that the output values estimated by the RNA are as close as 
possible to their actual corresponding values, but without 
losing generalizing capacity (Haykin, 2008).
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To start training, two adjustment parameters must 
be chosen to adjust the synaptic weights: η (learning rate), 
which influences the convergence of the error back algorithm 
propagation; and the factor α (momentum), which minimizes 
the algorithm’s instability during this convergence, as applied 
by Dantas Neto et al. (2014, 2017) and Araújo et al. (2015) 
who used QNET2000 in their studies, by adopting α = 0.8 and 
0.01 ≤ η ≤ 0.30.

Unlike those authors, this choice was to include the 
“test” stage in all developed models, this being a stage that 
occurs simultaneously with training using data not included 
in the set adopted in that training.

During training the so-called overfitting may occur, 
meaning that the neural network stored the peculiarities 
and noise levels, but lost the generalizing capacity (Haykin, 
2008). To detect overfitting, as recommended by Nejad & 
Jaksa (2011, 2017), the early stopping technique was used, 
that is, the training process is interrupted when the error in 
the test stage increases even when the number of iterations 
increases.

In the validation phase, output neurons are calculated 
with the synaptic weights obtained during the training 
phase, but using information as yet unknown by the artificial 
neural network, which is why it is possible to assess the 
generalizing capacity (Haykin, 2008) of the tested neural 
network at this stage.

There are no explicit rules to determine the quantity 
of data used at each of these stages (training, testing and 
validation), but it was decided to use the same proportion 
between training, testing and validation adopted by Maizir 
(2017), Kordjazi et al. (2015) and Tarawneh (2013), i.e., 
70%, 15% and 15%, respectively. In this work the examples 
are randomly separated.

3.4 Criterion for definition of the ANN architecture

The architecture of an artificial neural network is 
related to how the neurons are structured. The performance 
of the architectures tested in this study is assessed by the 
values of root mean square error (Equation 5), RMSE, and 
coefficient of determination (Equation 6), R2, obtained in the 

validation phase. These measurements were used in several 
works (Pham et al., 2020; Chen et al., 2020; Benali et al., 
2018; Maizir, 2017 and Momeni et al., 2014, 2015).
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where m inferred the number of examples, iy  and iy  were 
the actual and predicted outputs, respectively, and y  was the 
average value of the iy .

Considering these concepts, the architectures with 
correlations closest to 1.0 were selected, totaling 14 models, 
five of which are to the predictions of the shaft bearing 
capacity and nine tip bearing capacity, the results of which 
will be presented and discussed below.

4. Results and discussions

The architectures, iteration numbers and coefficient 
of determination values obtained in the validation phase, 
referring of the models developed to prediction of the shaft 
and tip bearing capacities of single piles are presented in 
Tables 5 and 6, respectively.

In Table 5 it is apparent that an increase in the 
quantity of input variables requires more hidden layers and, 
consequently, more neurons in these layers to achieve the 
same correlations as the simpler models. In relation to the 
iterations, it is noticeable that for more complex architectures 
more iterations are required, the only exception being 
model MQS3, which differs only in the input variable PT 
of MQS2. However, the number of iterations between them 
differs by approximately 50%, in contrast to the expected 
behavior that would be an increase in iterations, since the 
PT1 variable assumes only four values while PT2 variable 
has seven possibilities.

Table 5. Performance indices obtained in the validation phase for neuron models developed to estimate the shaft bearing capacity.
Model Input variables Architecture Iteration R2 RMSE

MQS1 ( ) , , S acQ f D NF WL= 3:2:1 800 0.86 0.235

MQS2 ( ) , , , 1S acQ f D NF WL PT= 4:4:1 15000 0.91 0.227

MQS3 ( ) , , , 2S acQ f D NF WL PT= 4:4:1 7600 0.93 0.184

MQS4 ( ) , , , 2,% ,% ,%S ac ac ac acQ f D NF WL PT Sand Silt Clay= 7:4:2:1 26000 0.94 0.175

MQS5 ( ) , , , 2,% ,% ,% , S ac ac ac acQ f D NF WL PT Sand Silt Clay LT= 8:4:2:1 20000 0.95 0.158
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The analysis of the coefficient of determination in 
Table 5 show that model MQS1, even with few input 
variables, has already achieved satisfactory results, i.e., 
a coefficient of determination of 0.86. This affirmation is 
based on the conclusions reported by Pham et al. (2020), 
Chen et al. (2020), Benali et al. (2018), Maizir (2017) and 
Momeni et al. (2014, 2015).

Nevertheless, when including the input variables PT1 and 
PT2 there was an increase in the coefficient of determination 
from 0.86 to 0.91 and 0.93, the largest being for variable 
PT2. This means that the idea to separate the pile types, both 
by constructive methodology and their material, is close to 
the models’ responses for the desired value. There is also an 
increase, albeit smaller, in the coefficient of determination, 
when adding the input variables that represent the soil type 
(%Sandac, %Siltac and %Clayac) and loading type (LT), 
arriving at a coefficient of determination equal to 0.95. Thus, 
the MQS5 model is proposed herein to estimate the shaft 
bearing capacity.

Regarding the root mean square error, the values shown 
in Table 5 are acceptable when compared to the results found 
by Pham et al. (2020) and Chen et al. (2020) who applied 
artificial neural networks to estimate the bearing capacity 
of single piles. The MQS5 model has the lowest root mean 
square error.

Table 6 shows that, even when increasing the quantity 
of input variables, it was possible to achieve good results 
with only one hidden layer. The models with the highest 
number of iterations are the models MQP5 and MQP7 that 
have the largest quantity of neurons in the hidden layer and 
input layer, respectively. No relation was detected between 
the quantity of neurons of the hidden layer and the number 
of iterations.

On analyzing the coefficient of determination values 
in Table 6, it is apparent that the first three models were 
evaluated to predict the tip bearing capacity of piles, MQP1, 
MQP2 and MQP3 in which only the input variable is modified 
with regard to the soil index. The lowest value belongs to 
model MQP2 and the highest to model MQP1, which means 
that variable NP1 better represents the soil index in the 
developed neuron models for the tip load.

Including variable PT1 in model MQP1 there was a 
decrease in the coefficient of determination from 0.89 to 
0.77, and by repeating the procedure for input variable PT2 it 
increased to 0.99. As in the case of the model proposed 
to predict the shaft bearing capacity of piles, pile type 
PT2 provides answers closer to the desired value also for the 
tip load. Other input variables were added to model MQP5, 
but there was no increase in the coefficient of determination 
value, so model MQP5 is proposed herein to estimate the 
tip bearing capacity of piles.

The root means square error values obtained in the 
models developed to estimate the tip bearing capacity, 
shown in Table 6, are also acceptable. Model MQP9 has the 
smallest root mean square error and was not chosen because 
the coefficient of determination is only 0.88.

Figure 3a demonstrates the evolution of the coefficient 
of determination in function of the iterations for model 
MQS5, in which the convergence of the curves is noticeable, 
referring to training and testing performed in the training 
phase. Figure 3b illustrates the coefficient of determination 
for model MQS5 in the validation phase for 20000 iterations.

Figure 3c shows the evolution of the coefficient of 
determination as a result of the iterations for model MQP5, 
in which a similarity is noticeable of the curves referring 
to training and testing during the training phase. Figure 3d 

Table 6. Performance indices obtained in the validation phase for the neuron models developed to estimate the tip bearing capacity of piles.
Model Input variables Architecture Iteration R2 RMSE

MQP1 ( )  , 1PQ f D NP= 2:2:1 200 0.89 0.102

MQP2 ( )  , 2PQ f D NP= 2:3:1 1700 0.50 0.175

MQP3 ( )  , 3PQ f D NP= 2:1:1 1400 0.88 0.161

MQP4 ( )  , 1, 1PQ f D NP PT= 3:4:1 30000 0.77 0.064

MQP5 ( )  , 1, 2PQ f D NP PT= 3:6:1 90000 0.99 0.177

MQP6 ( )  , 1, 2, PQ f D NP PT S= 4:2:1 3000 0.86 0.095

MQP7 ( )  , 1, 2, , , P sand silt clayQ f D NP PT G G G= 6:4:1 78000 0.90 0.094

MQP8 ( )  , 1, 2, PQ f D NP PT WL= 4:3:1 37300 0.87 0.170

MQP9 ( )  , 1, 2, PQ f D NP PT LT= 4:3:1 30300 0.86 0.057
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illustrates the coefficient of determination for model MQP5 in 
the validation phase.

5. Model application

The models proposed in this article were used to estimate 
the bearing capacity of three (3) single piles (two bored and 
one continuous flight auger type) as well as in groups of up 
to three piles implemented in the Experimental Research 
Site of foundations and in situ testing of the University of 
Brasilia (Figure 4).

The geotechnical profile and pile characteristics are 
provided in Figure 5 and were compiled in the study by 
Anjos (2006). This is a geotechnical profile consisting of 
three layers: the first, from 0 to 3.5 m, has porous clayey 
sand; the second, between 3.5 and 8.5 m, provides sandy clay, 
and from 8.5 m the soil has a siltier texture (Mota, 2003).

The two bored piles (single) were tested until there 
was a 10% displacement in diameter. One of them placed 
on only a slightly resistant material with a view to assessing 
only the shaft bearing capacity. And two consecutive tests 
were performed on the pile supported on soil (in which it was 
possible to assess the shaft bearing capacity and tip bearing 
capacity), the first being a slow maintained load test (SML) 
and the second a quick maintained load (QML).

In relation to continuous flight auger piles, Anjos (2006) 
installed one single pile, a group with two and another with 
three piles, all subject to slow loading (SML). The spacing 
between the piles in groups was three times the diameter with 
a rigid crown block in no contact with the ground.

Figure 6 shows the shaft bearing capacity-depth curves 
corresponding to the semi-empirical methods of Aoki & 
Velloso (1975) and Décourt & Quaresma (1978) and model 
proposed in this works. Figure 6a refers to the bored pile 
E1 and Figure 6b to the continuous flight auger pile E3.

Note that the shaft bearing capacity calculated by 
the proposed models are higher than those obtained by the 
semi-empirical methods. Knowing that the semi-empirical 
methods usually underestimate the shaft bearing capacity, it 
is possible to infer that the proposed model provides more 
realistic values.

Figure 7 shows the comparison between the values found 
in the load test and semi-empirical methods (Aoki & Velloso, 
1975; Décourt & Quaresma, 1978) and those obtained from 
the models proposed in this study. The bearing capacity of 
the pile groups was considered equal to multiplying between 
the quantity of piles and the single pile bearing capacity 
(Cintra & Aoki, 2010).

It is found that for bored single piles the proposed 
models overestimate the bearing capacity obtained in the 
static load test, but the difference in percentage terms between 
the values for the proposed methods and the load test value 
varies between 3% and 30%, while the method by Aoki & 
Velloso (1975) shows that this difference ranges from 59% to 
83%, and between 38% and 64% for the method by Décourt 
& Quaresma (1978).

For the single continuous flight auger pile the result 
achieved with the proposed neuron models can be considered 
very close to the load test value, since the values calculated 
by the methods of Aoki & Velloso (1975) and Décourt & 

Figure 3. Coefficient of determination for models proposed.
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Figure 4. Location map of the site experimental and the piles studied.

Figure 5. Geotechnical profile for single piles and in groups. Adapted from Mota (2003).
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Quaresma (1978) are approximately 50% lower than the 
desired value.

With regard to the groups consisting of two and 
three continuous flight auger piles, it is apparent that the 
proposed neuron models underestimate by only 9% and 
overestimate by 32% the values obtained from the static 
load tests on those groups, respectively. However, for 
the semi-empirical methods of Aoki & Velloso (1975) 
and Décourt & Quaresma (1978), this same difference 
is around 55% for the group with two piles and 33% for 
the three-pile group.

Accordingly, it can be said that the proposed models 
reproduce more satisfactorily the bearing capacity both for 
single piles and groups than the semi-empirical models 
considered. The difference between the values found 
for the proposed methods and the load test value varies 
between 9% and 32%, while for the method by Aoki & 
Velloso (1975) this interval is between 34% and 83% and 
for the Décourt & Quaresma method (1978) it is between 
31% and 64%.

6. Conclusions

According to the results, it can be concluded that the 
multilayer perceptron is a tool that can estimate the shaft 
bearing capacity and tip bearing capacity of single piles, 
based on variables relating to pile geometry and soil type 
(information collected from boreholes), with a relatively 
simple architecture.

The neural model proposed to estimate the shaft bearing 
capacity has eight (8) input variables (D, NFac, WL, PT2, 
%Sandac, %Siltac, %Clayac, LT) and provided a coefficient of 
determination equal to 95% between the desired value and the 
calculated value. On the other hand, the model that estimates 
the tip bearing capacity has only three input variables (D, 
NP1, PT2) with 99% coefficient of determination.

The coefficient of determination obtained from the 
neuron models that estimate the shaft bearing capacity and 
tip bearing capacity of single piles range from 0.8 to 0.99, 
an interval of coefficient of determination similar as those 
obtained by authors when assessing the applicability of 

Figure 6. Comparison between the shaft bearing capacity estimated by the proposed models and the values obtained from semi-empirical 
methods.

Figure 7. Comparison between the bearing capacity estimated by the proposed models and the values obtained from load testing and 
semi-empirical methods.
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artificial neural networks in the ability to predict the pile 
bearing capacity. However, the neuron models proposed 
proved to help the calculation of the shaft bearing capacity 
according to depth and not only the total value of bearing 
capacity. Moreover, have the potential to be applicable to 
seven types of piles and different geotechnical profiles.

When analyzing the results from the neuron models 
for single piles and groups of piles, it was observed that the 
proposed methods are more efficient than the semi-empirical 
methods applied in Brazilian foundation engineering practice, 
since the dispersion in the results is less when the results 
achieved are compared to the static load test values.

In general, the proposed models overestimate the 
bearing capacity, which can be explained by the fact that 
the models were based on the ultimate load applied during 
the static load test. Therefore, the recommendation is to 
use correction factors of around 0.88 for single piles and 
approximately 0.75 for groups. To improve these values, it 
is recommended an improved analysis with more data and 
distinct geotechnical conditions.
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List of symbols

m Number of examples
n Number of pile sections

iy  Actual outputs
iy  Predicted outputs

y  Average value of the iy .
ANN Artificial Neural Networks
D Pile dDiameter
Gsand Percentage values for of sandy fractions
Gsilt Percentage values for of silty fractions
Gclay Percentage values for of clayey fractions
Le Embedded length
LT Loading Type
N Number of blow counts/last 30 cm of penetration  
 in SPT test
NFac Soil resistance index along the shaft
NP1 Soil resistance index at tip 1
NP2 Soil resistance index at tip 2
NP3 Soil resistance index at tip 3
PT1 Pile type 1
PT2 Pile type 2
QML Quick Maintained Load
Qr Bearing capacity
Qs Shaft bearing capacity
Qp Tip bearing capacity
S Soil type
SML Slow Maintained Load
SPT Standard Penetration Test
R2 Coefficient of determination
RMSE Root mean square error
WL Water Level
%Sandac Factor representing the occurrence of accumulated  
 layers of sand
%Siltac Factor representing the occurrence of accumulated  
 layers of silt
%Clayac Factor representing the occurrence of accumulated  
 layers of clay
α Momentum
η Learning rate
∆Lclay Length of the section occurring clay
∆Le Length of the section
∆Lsand Length of the section occurring sand
∆Lsilt Length of the section occurring silt
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