‘
4

?

www.soilsandrocks.com

Soils and Rocks

ISSN 1980-9743

An International Journal of Geotechnical and Geoenvironmental Engineering ISSN-e 2675-5475 ‘ 7]
Risk management for geotechnical structures:
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Curves of risk acceptance and This paper intends to consolidate the theory of risk management into practical applica-
tolerance tions in geotechnical engineering, presenting concepts, clarifying procedures and dis-
Failure probability cussing openly its difficulties and trends. It brings the evolution of the risk concept and
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its application to engineering, worldwide and in Brazil, showing the trend of risk man-
agement as a decision-making tool in engineering with fair acceptance by the society.
The probabilistic approach is discussed and compared to the deterministic one, focusing
on the obtaining of reliability indexes and failure probabilities for engineering structures.
For this, quantitative methods, such as event and fault tree analyses and probabilistic
methods, are reviewed, discussing their applications and comparinPg their advantages
and disadvantages. Risk metrics and the evaluation of its two components, failure proba-
bility and consequences due to failure, are presented, focusing on the need to quantify
and monetise consequences, and, consequently, the engineering risks. From this derives
the concept of overall cost, which is the structure cost or value added to its risk value,
providing an efficient tool to compare engineering alternatives and solutions. Finally, the
risk management scheme is discussed, focusing on the need to establish an intelligent
risk management system, which incorporates an automatic and intelligent communica-
tion tool, to disseminate among professionals, company hierarchy and outside stake-
holders, the structure risks, according to their levels in the Risk Diagram and guided by
the company Risk Policy. This is illustrated by examples of applications in two
geotechnical structures (a dam and an urban tunnel), showing its enormous potential as a
decision-making tool in engineering, using risk-based or risk-informed approach.

bust theoretical background applied to practical examples,
using the simplest language and manner as possible. From
that it comes the proposed target of consolidating theory
into practice of risk management applied to geotechnical

1. Introduction

This paper presents the contents of the Pacheco Silva
Conference, awarded by the Brazilian Society for Soil Me-

chanics and Geotechnical Engineering (ABMS), and deliv-
ered during the XIX COBRAMSEG (Brazilian Congress
on Soil Mechanics and Geotechnical Engineering) in Sal-
vador, August 2018. The theme of the conference was
agreed between the ABMS and the author, considering the
growing demand for geotechnical risk analysis and man-
agement in Brazil and worldwide. This paper aims to pres-
ent the basic concepts related to the probabilistic approach
and risk management, including probabilistic methods to
evaluate the probability of failure modes of geotechnical
structures, estimation of consequences, in case of failure
occurrence, risk calculation and evaluation considering the
acceptance and tolerance curves, taking into account a ro-

structures.

Ground property variability has been recognised for a
long time (Lumb, 1966) and concepts of risk and reliability
applied to geotechnical engineering (Ang & Tang, 1975,
1984; Harr, 1987) have been available for the last four de-
cades. However, the consideration of this knowledge to
analyse and design geotechnical structures is still not fully
widely applied, struggling with a deterministic culture es-
tablished and dominant for a long time. In addition to the
deterministic culture, several factors may have been con-
tributing to the difficulties of applying risk management
currently in geotechnical engineering, such as: i) poor
background in statistics and probability of the professionals
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involved; ii) difficulties to establish the probability distri-
bution of geotechnical properties and loadings due to lack
or few number of data; iii) feeling that risk calculation is too
complicated, complex, time consuming or not accurate
enough; and iv) no familiarity with risk acceptance con-
cepts contrarily to safety factors (or similar concepts), who-
se recommended values are well defined in standards and
guidelines.

The fact that traditional engineering has always con-
sidered the concept of exactitude has led professionals and
society to believe in accurate and precise calculations, with
no chances for errors and potential failures. This concept
has implied calculations following the deterministic ap-
proach, where in any engineering calculation, defined by an
empirical, analytical or numerical formulation, material
properties and loadings are deterministically defined by
specific values, giving a unique result for the engineering
calculation. However, it is well known by engineering pro-
fessionals that some properties and loadings are variable or
present uncertainties and should not be defined as a unique
value. For this reason, concepts of safety margins or factors
have been proposed, which means that the engineering re-
sult calculated by the deterministic approach has to obey a
safety margin in relation to its critical value that defines a
potential failure for that particular structure. In other words,
the recognised variability and uncertainties of some engi-
neering properties and loadings have been dealt by safety
margins or similar concepts.

In the 1950s, the nuclear energy engineering had to
deal with uncertainties for the first time in a clear, simple
and objective way to share information with society. The
Brookhaven Report (USAEC, 1957) analysed the conse-
quences of an eventual failure of a nuclear powerplant reac-
tor and estimated potential losses and impacts. Despite
some fatalities and economic losses were estimated, no
methodology for evaluating the failure probability was pre-
sented. This report can be considered the first to clearly
tackle risks of engineering structures using qualitative esti-
mation. Later, the Rasmussen Report (USNRC, 1975) pre-
sented a review of the Brookhaven Report, incorporating
quantitative methodologies for estimating risk, in terms of
both failure probability and potential consequences. These
reports played an important role in promoting the probabil-
istic approach and risk analysis to deal with uncertainties
and variabilities, clearly opposite to the deterministic ap-
proach commonly adopted in traditional engineering. In the
1990s, the concepts of risk analysis and management be-
came more common and widely applied to several types of
structures, turning into a decision-making tool in engineer-
ing (risk-based or risk-informed approach), which means
that the calculated risk is taken as one of the key aspects for
selecting the best engineering alternative, which has been
called the New Engineering.

In Brazil, the pioneers of risk management applied to
geotechnical engineering introduced these concepts in the
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1980s and 1990s, in particular Fernando Franciss, Hachich
(Hachich, 1981; Hachich & Vanmarcke, 1983), Pacheco
(1990) and Aoki (Aoki & Cintra, 1996). In 1995, a graduate
course dedicated to probabilistic approach and risk manage-
ment applied to geotechnical engineering was created at the
University of Brasilia (Assis et al., 2018), which has moti-
vated applied research on this topic and several M.Sc. and
Ph.D. theses have been completed (Espésito, 1995, 2000;
Lauro, 2001; Maia, 2003, 2007; Perini, 2009; Hidalgo, 2013;
Alarcon-Guerrero, 2014; Charbel, 2015; Mendes, 2017;
Franco, 2019; Mendes, 2019; Yokozawa, 2019). Other insti-
tutions in Brazil have also contributed actively to risk man-
agement in geotechnical structures, such as the Federal Uni-
versity of Ouro Preto (UFOP), Pontifical University of Rio
de Janeiro (PUC-Rio) and University of Sdo Paulo (USP), to
cite a few. Lately, this topic has been gaining importance in
the Brazilian geotechnical community and widely dissemi-
nated by the ABMS, contemplating risk aspects, analysis
and management in three Milton Vargas Lectures (Coutinho,
2010; Aoki, 2011; Hachich, 2018), two Pacheco Silva Con-
ferences (this paper; Aoki, 2016) and two Victor de Mello
Lectures (Mitchell, 2014; Morgenstern, 2018).

Once assuming that engineering calculations incor-
porate uncertainties and sharing this concept with society,
this has brought a dilemma between engineering and soci-
ety. In general, engineering professionals attempt to focus
only in the failure probability of their structures, which it
usually quite low. On the other hand, the society only con-
siders the consequences of an eventual failure of these engi-
neering structures, which in some cases can be quite con-
siderable or even catastrophic. Both views are realistic, but
antagonistic. Then, the concept of risk, which incorporates
both the failure probability and its potential consequences,
is the only one able to consider the demands of both sides.
In other words, the risk concept is the common denomina-
tor between engineering and society, therefore able to be
the promising key parameter for decision of acceptable en-
gineering solutions for the society.

It is worth recalling the evolution of engineering ap-
proaches during the last decades. In the past, the engineer-
ing approach focused basically on the technical benefits
and costs of structures, which means that the dimensional
view of engineers was only the engineering structure itself.
Later, the environmental impacts caused by the implanta-
tion and operation of engineering structures have jointed
the aspects of benefits and costs. One can say that the engi-
neering view widened to two dimensions, focusing on the
structures and their environmental impacts. More recently,
the evolution of the current engineering approach has in-
cluded engineering risks, which consider its failure proba-
bility and all dimensions of consequences due to its even-
tual failure. This means that the best engineering alternative
nowadays has to take into account aspects of technical ben-
efits and costs of the structure, its environmental impacts
for implantation and during operation, and its potential con-
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sequences to the society in case an eventual failure occurs,
which is the risks of the engineering structure.

Since risk analysis and management is an essential
aspect of the New Engineering, it is desirable to present the
important components of risk theory and its practical appli-
cation to geotechnical structures. As risk is based on uncer-
tainties and variabilities, the first step is to discuss how to
incorporate them in engineering calculations, which is done
using the probabilistic approach in opposition to the deter-
ministic one, commonly used in traditional engineering up
to now.

2. Probabilistic approach

Before discussing the probabilistic approach, it is
worth recalling the concept of failure criterion usually
adopted for engineering structures. Among all engineering
calculations, some are of interest for analysing the behav-
iour or checking the safety of structures. They are called
performance indicators and examples in geotechnical engi-
neering can be the flow rate of a dam, settlements of a foun-
dation, safety factor of a slope, construction schedule, costs
and so on. Each of these performance indicators is calcu-
lated by an engineering formulation, which can be empiri-
cal, analytical or numerical, and is generally expressed as:

y=fx,x,,...,x,) (1)

where y is the performance indicator, x, are the input param-
eters (material properties, loadings etc.) and f is the func-
tion that defines the engineering formulation for this
performance indicator.

For each performance indicator, a failure criterion
can be defined. The concept of failure here has a very broad
meaning, indicating deficient or total loss of the engineer-
ing structure performance (structural, functional, schedule
overtime, over costs etc.). A critical value (y,,) for the per-
formance indicator is defined, which means that the struc-
ture would not perform satisfactorily if the performance
indicator calculated value exceeds its critical value. Failure
criteria can be expressed as:

V= 0, X, 0 X)) >y,
or 2)

y :f('xl’XZ"""xn)<ycr[l

This concept is quite common in traditional engineer-
ing, which adopts the deterministic approach, calculating
the performance indicator using constant values for all in-
put parameters. The assumed values for input parameters
are a choice of the engineer and commonly are taken as the
mean, most likely or any other value according to his or her
experience and common sense. As all input parameters are
taken as constant values, the calculated value of the perfor-
mance indicator is unique. In some occasions, to better un-
derstand how input parameters may affect the calculated
value of the performance indicator, parametric or sensitive
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analyses can be done to complement the deterministic
calculation. Safety margins are defined between the perfor-
mance-indicator calculated value and its critical value to
cover eventual uncertainties and variabilities of input pa-
rameters and engineering processes (assumptions, model-
ling adequacy and so on). The concept of safety margins is
very consolidated and well-accepted in traditional engi-
neering and typical values are commonly suggested or pre-
scribed by guidelines and standards.

On the other hand, the probabilistic approach can be
taken as an alternative to the deterministic one, where un-
certainties and variabilities of input parameters are consid-
ered in the evaluation of the performance-indicator engi-
neering formulation (Eq. 1), using probabilistic methods.
As some input parameters are taken as variables, and not
constant values, the calculated value of the performance in-
dicator is also a variable and can be described as a probabil-
istic distribution function. Besides the probabilistic func-
tion statistics (mean, standard deviation, etc.), this permits
an additional and very important information, which is the
failure probability (p), defined as the probability of the per-
formance-indicator probabilistic function exceeding its cri-
tical value prescribed by the failure criterion. The statistics
of the performance-indicator probabilistic function allow
the evaluation of the reliability index 3 (Christian et al.,
1992, 1994) and the failure probability, expressed as:

— (y m _y(,'rit)
(&

y

p 3

pf = p(y > ym',) or Pf = p(y < yorit) (4)

where f is the reliability index; y, is the mean value of the
performance indicator; y,, is the critical value of the perfor-
mance indicator as prescribed by the failure criterion; o, is
the standard deviation of the performance indicator; and Dy
is the failure probability.

It can be noted that the reliability index () has a simi-
lar concept of the safety margin, defined by the difference
between the mean and critical values, normalised by the
standard deviation. In other words, it is the number of stan-
dard deviations from the mean to the critical values of that
performance indicator. Its main advantage is that it is inde-
pendent of the performance-indicator probabilistic func-
tion, which is helpful for suggested or prescribed values in
guidelines. On the contrary, the failure probability (p,) can
be only calculated for a certain probabilistic function. The
main aspects and comparison between the deterministic
and probabilistic approaches are shown on Table 1.

Figure 1 illustrates the schematic process of the pro-
babilistic approach. Some input parameters assumed as
variable (x,) can be described by a probabilistic function
that best fits its variability distribution. Input-parameter
probabilistic functions are considered in the calculations of
the performance-indicator engineering formulation using
probabilistic methods. The result is the performance-in-
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Table 1. Comparison between engineering approaches.

Engineering approach Deterministic

Probabilistic

Input parameters of the engineering for- Values of input parameter are assumed con- Some input parameters are assumed as vari-

mulation (x, independent variables) stant

Dependent variable y (performance indi- Result is a unique or a range of values for
parametric or sensitivity analyses

cator)

Failure criterion

ables

Result is a probabilistic function or a mean
value and its standard deviation

Comparison between the calculated and crit- The reliability index and failure probability
ical values of the performance indicator y

of the performance indicator y are calculated

and check with the prescribed safety margin and used in risk analyses

dicator probabilistic function and its statistics, which per-
mits to calculate its mean value, standard deviation, reli-
ability index, failure probability and so on.

As mentioned, one of the main advantages of the
probabilistic approach is the evaluation of the failure prob-
ability or reliability index of the performance indicator, in
addition to its mean value. Traditional engineering based
only on deterministic approach usually takes decisions
founded on the mean value or similar. When also taking
into account the failure probability or reliability index, be-
sides the mean value of the performance indicator, the input
parameter variabilities (standard deviations and type of
probability functions) are also considered. Figure 2 depicts
this concept considering two slopes, with different mean
and standard deviation values of the Factor of Safety (FS).
Slope B has a greater FS mean value (FS = 2.0) than Slope
A (FS = 1.5), but due to the greater scatter of its input pa-
rameters (standard deviation of 0.85 for Slope B against
0.25 for Slope A), Slope B also presents a higher value of
the failure probability. Considering only the FS mean val-
ues, which is commonly the practice in traditional engi-
neering, one may erroneously decide that Slope B is safer
than Slope A. This reinforces that any attempt to establish

Probabilistic
functions of the
input parameters x;

correlations for different structures between the mean value
of performance indicators and their probabilities of failure
may lead to misjudgements, because it misses an important
information, which is the input data scatter, as depicted in
Fig. 3.

Despite the advantages of the probabilistic approach
applied to engineering, there are several challenges to be
overcome in order to ensure reasonable and reliable results
from it. The estimation or calculation of the failure proba-
bility can be done by different methods, ranging from the
simplest to more complex ones, such as:

* Qualitative analyses are the simplest methods, where the
failure probability is qualified by adjectives (for instan-
ce, ranging from practically impossible to very likely).

e Numerical values, where the adjectives qualifying the
failure probability are replaced by a range of numbers
(for instance, number 1 means practically impossible, in-
creasing to number 5, which means very likely).

¢ Event-tree and fault-tree analyses describe the logical
path of events leading to failure and allow to attribute
probabilities to each event, finally quantifying the failure
probability according to the relation among all partici-
pating events.

\ i
Variable X, J\\

] Probabilistic
Variable X, N >- y =f(xl,x2...xn) function of the
- performance
1 indicator
) Probabilistic methods y = fix))

Variable X3 |\ applied to the

) engineering formulation

Figure 1. Schematic process of the probabilistic approach applied to engineering.
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Figure 2. Comparison of the factor of safety of two slopes.
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Figure 3. Comparison between factors of safety and failure probabilities of 57 different engineering structures, showing no correlation

between these two variables.

* Probabilistic methods are the most complex ones, using
the scheme depicted in Fig. 1.

The first challenge of applying probabilistic approach
in engineering is the selection of the type of method to esti-
mate or calculate the failure probability of structures. This
depends on the availability and quality of input data, impor-
tance and complexity of the structure (dimensions and po-
tential impacts in case of an eventual failure), level of
engineering studies and knowledge and maturity of profes-
sionals and companies involved. At a first trial, the main
point is to use the probabilistic approach, no matter how
simple the chosen method is. However, there are many
gains moving to quantitative methods (Assis et al., 2019;
Oboni & Oboni, 2020), which are the focus of this paper,
more precisely the use of probabilistic methods to evaluate
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the failure probability. As shown in Fig. 1, the

quantification of the reliability index and failure probabil-

ity of a certain performance indicator requires:

e Selection of a performance indicator, its engineering for-
mulation and critical value (defined by the adopted fail-
ure criterion), what is also a common practice in
traditional engineering.

e Definition of the probabilistic functions or statistics
(mean and standard deviation) of input parameters (ma-
terial properties), loadings, etc., which are taken as vari-
ables for the calculation of the performance indicator.

* Choice of the most adequate probabilistic method to ob-
tain the probabilistic function or statistics of the perfor-
mance indicator, and, consequently, its reliability index
and failure probability.
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* Interpretation of the probabilistic analysis results by the
evaluation of the reliability index and failure probability,
and, consequently, the risk management of the engineer-
ing structure.

Before discussing probabilistic methods, a word on
event-tree and fault-tree analyses. These tools are quite im-
portant when the failure probability has to be quantified,
but there is no well-defined engineering formulation to
evaluate that performance indicator, so that probabilistic
methods cannot be applied. In addition, event and fault
trees are excellent engineering exercises, helping establish
the logical sequence of events towards the final failure
event (event tree) or backwards from the failure event,
identifying the previous events necessary to cause the fail-
ure (fault tree). Once the event or the fault tree is set, these
tools are useful and effective to understand the whole engi-
neering process that may lead to the final failure event.
Then, probabilities can be attributed to each event, using
expert experience and perception or any other calculation
tool. At the end, the probability of the failure event may be
calculated using logical operators, following probability
rules for events that may occur alternatively, simultaneous-
ly, in series and so on. Figure 4 shows an example of event
tree for calculating the failure probability due to piping in a
dam. Two aspects are of particular interest in this example:
1) firstly, piping is a phenomenon that hardly is defined by a
precise engineering formulation, so that the event tree anal-
ysis is required; ii) secondly, some probabilities of the
branches of this event tree have been calculated using fault
tree analysis. So, this example combines both event and
fault tree techniques and, finally, the failure probability due
to piping is quantitatively calculated. More detailed discus-

sions on event and fault tree analyses applied to piping in
dams are presented by Fell et al. (2015) and Caldeira
(2018).

Contrarily, when the performance indicator is well-
defined by an engineering formulation (empirical or analyt-
ical expressions, or numerical calculations), the use of
probabilistic methods is recommended and presents reli-
able results. Probabilistic methods can be defined as those
able to determine the probabilistic distribution function or
its statistics of a dependent variable (performance indica-
tor), which is defined by an engineering formulation, based
on the probabilistic distribution functions or their statistics
of input variables (material properties, loadings, etc.). The-
re are many probabilistic methods available and the most
commonly used in geotechnical engineering are the Monte
Carlo Method — MCM (Harr, 1987; Baecher & Christian,
2003; Fenton & Griffiths, 2008), First Order Second Mo-
ment — FOSM (Harr, 1987; Baecher & Christian, 2003),
Point Estimate Method — PEM (Rosenblueth, 1975, 1981;
Harr, 1987; Baecher & Christian, 2003), Hybrid Point Esti-
mate Method — HPEM (Gitirana, 2005; Franco, 2019; Fran-
co et al., 2019; Yokozawa, 2019), First Order Reliability
Method — FORM (Baecher & Christian, 2003; Fenton &
Griffiths, 2008) and so on. All of them require the variabil-
ity data (probabilistic distribution functions or statistics) of
the input parameters, which is the second challenge of the
probabilistic approach applied to engineering to be dis-
cussed in this paper.

The problem is how to obtain the probabilistic distri-
bution functions of input parameters and loadings assumed
as variable, considering that usually engineering input pa-
rameters and loadings are quite limited in values due to test-

Reservoir Initiation Erosion Tubing Tubing Detection & Failure Final Failure
Water Level Progressing Formation Progressing Intervention Mechanism Consequence Probability
Dam
072 —pi=see]
Failure m
Tubing
032 Enlargement
No Dam
Detection 0.28 Damages -
0.02 nor butno [~ m
Intervention Failure
Tubbing Piping is
0.13 is still Detected
Stable 0.68 and
Stopped
Tubing Tubbing is
Ll Formation 0.98i Unstabl P=2€-5
Erosion Erosion E=2E:3
0.02 Progressing 0.87 Processis
Stopped
Normal Piping Flow P=2E-2
Water Through 0.01/ Rate
Level Dam Fill Increase . .
e P=2E-4 * Probabilities atributed to
0.98]_,| doesnot Event Tree branches are estimaded
Initiate
ST by Experts or Fault Tree Analyses

Figure 4. Example of an event tree for estimating the failure probability due to piping of a dam.
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ing complexity, time and costs. There are some options to
cope with this challenge. Firstly, consider that there are
plenty of data for a certain input parameter, which is a sam-
ple statistically representative of that variable. In this case,
data are treated by descriptive statistics, following these
stages: i) Calculate the mean, standard deviation and any
other moments of the sample data; ii) Organise the data in a
histogram; iii) Fit any probabilistic distribution function;
iv) Use any type of fitting test (minimum square of errors,
Chi-square, Kolmogorov-Smirnov, etc.) to check which
function better represents the sample data; v) Choose the
probabilistic distribution function and its statistics for that
particular input variable. More commonly, there is lack of
enough data to obtain the probabilistic distribution func-
tions of some input variables. In this case, the options to
represent the variability of the input parameters are the fol-
lowing:

» The few existing data of a certain variable are used to es-
timate the mean value and the standard deviation is ob-
tained by the coefficient of variation (CoV), as suggested
in the literature and listed in Table A1 (several authors
have reported typical or a range of CoV values for differ-
ent geotechnical properties, as CoV values present much
less scatter than the mean and standard deviation them-
selves); considering the obtained mean and standard de-
viation values, a probabilistic distribution function can
be adopted for that variable (some authors have sug-
gested the type of probabilistic functions that better fits
some geotechnical properties, as shown in Table A2).

* In case of no suggested CoV value for a certain variable
and, consequently, its standard deviation cannot be esti-
mated, some simplified probabilistic functions can be
adopted such as Constant or Triangular functions, which
requires the minimum and maximum values of the vari-
able (these limit values might be defined by expert and
experienced engineers).

Some comments now follow on the above options to
overcome the lack of enough data to describe the variability
of input parameters taken as variables. The CoV values and
their ranges suggested in Table Al are the best option to
overcome the lack of data. However, it is highly recom-
mended that the chosen value be the result of a critical anal-
ysis from experienced engineers, considering their expecta-
tion of the variability of that parameters. For instance, the
CoV range for the cohesion varies from 20 to 80 %, and
40 % is commonly taken for most cases; however, if the tar-
get is the cohesion CoV for a compacted soil, the lower val-
ues of the range can be considered, such as 20-25 %, but on
the contrary, if the target is the cohesion CoV for a natural
saprolithic soil, maybe the higher values of the range are
more adequate, such as 60 % or more due to its enormous
variability. Other important point to consider is that the
simplified probabilistic functions (constant or triangular)
do not require a defined standard deviation value, however,
some probabilistic methods require this value even so. A
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common approximation to estimate the standard deviation
for these functions is to assume its value equal to 1/6 of the
difference between the maximum and minimum limit val-
ues of that variable (this concept comes from the fact that
variables described by the normal distribution present al-
most all its variability within the limits of three standard de-
viations around the mean value, totalling six standard devi-
ations for the whole range).

Other important point to consider for representing the
input variables by probabilistic distribution functions is the
truncation of their value ranges. This is needed because
some probabilistic functions are unbounded on both sides
or on one side, requiring that limits are imposed on un-
bounded sides to avoid variable values outsider their realis-
tic possible range. Two types of truncations are possible,
the statistical and the engineering ones. The statistical trun-
cation is usually done considering a number of standard de-
viations around the mean value (mean value minus m stan-
dard deviations and mean value plus n standard deviations,
where commonly m is equal to n). As already mentioned,
three standard deviations around the mean value for vari-
ables well-described by the Gaussian distribution represent
almost the totality of the possible range (99.7 %) of that
variable, so that this is a very commonly adopted trunca-
tion. Statistical truncations using smaller numbers of stan-
dard deviations around the mean values have to be taken
with care, because, if the range of values for input variables
are made narrower, the standard deviation of the dependent
variable (performance indicator) evaluated by probabilistic
methods may be done artificially smaller, leading to lower
failure probabilities than the realistic ones (Hammabh et al.,
2010). On the other hand, sometimes the statistically trun-
cations define a range of values for a particular input vari-
able that is not realistic, which means that the possible val-
ues of that variable are not physically acceptable. In this
case, it is highly recommended to apply engineering trunca-
tion, defining the minimum and/or maximum acceptable
limit values of the variable. It is helpful to have the exper-
tise of experienced geotechnical engineers to define these
limit values for the geotechnical properties to be repre-
sented by probabilistic distribution functions. In summary,
the good practice is to firstly define the statistical truncation
(three standard deviations around the mean value is recom-
mended) and then, check if its range of values does not vio-
late the possible engineering range of values for that input
variable; if so, the range of values defined by the statistical
truncation has to be corrected by the engineering trunca-
tion.

Once all input variables have their probabilistic distri-
bution functions or their statistics (mean value and standard
deviation) defined, probabilistic methods can be applied to
obtain the probabilistic distribution function or its statistics
of the dependent variable (performance indicator). Several
probabilistic methods are available with their advantages
and disadvantages and comments are made on the three
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most popular methods applied to geotechnical engineering,
which are the Monte Carlo Method (MCM)), the First Order
Second Moment Method (FOSM) and the Point Estimate
Method (PEM).

The MCM is a probabilistic method that may be con-
sidered exact in obtaining the probabilistic distribution
function of the dependent variable, since it solves randomly
the engineering formulation for the dependent variable
(performance indicator) N times, generating a sample of re-
sults, and when N is a number large enough, the statistics of
the resulting sample do not change any more, achieving its
stability, indicating that the results are final and considered
exact. The aspects and steps for running the MCM (Fig. 5)
can be summarised as follows:

e The MCM aims to obtain an approximate numerical sim-
ulation of the probabilistic distribution function of the
dependent variable y (performance indicator), which is
defined by an engineering formulation (empirical, ana-
lytical or numerical).

* The MCM requires the probabilistic distribution func-
tions of all input variables.

* Independent and random values for each input variable x,
are obtained and an evaluation of the engineering formu-
lation of the dependent variable y is done; for each input
variable selection, its probabilistic distribution function
is taken in its accumulative probability form, and a ran-
dom number between 0 and 1 is obtained, applied to the
accumulative probability curve, obtaining the value of
the input variable x,, which is used in that particular
MCM simulation.

* Repeating this procedure N times, a sample of N discrete
values of the dependent variable y is obtained; this pro-
cess may require considerable computational effort, de-
pending on the complexity of the engineering formula-
tion.

e Taken this sample with N values of the dependent vari-
able (performance indicator), a histogram can be plotted
and the statistics (mean, standard deviation and other
moments) calculated, as well the best-fit probabilistic
distribution function found and the failure probability
evaluated.

* Increment the number of MCM simulations until the re-
sulting statistics is stabilised (they do not change com-
pared to immediate previously ones as shown in Fig. 6);
when that happens, the MCM results can be considered
final and exact.

As soon as a sample of N results of the dependent
variable (performance indicator) is obtained, the sample
statistics can be calculated using descriptive statistics of
discrete variables, as expressed below for the mean value,
standard deviation and failure probability:

> )

E()=y =<5 )

G, = Z(y]—vE(y)) (6)
N

= @

where: E(y) is the mean value of the dependent variable y; y,
are the discrete values obtained by MCM simulations; N is
the total number of MCM simulations; G, is the standard de-
viation of the dependent variable; p, is the failure probabil-
ity of the dependent variable; N, is the number of MCM
simulations that indicates failure (y, <y, ory >y, ).

A key point is to know when the number N of MCM
simulations is large enough and the results can be consid-
ered already stabilised. Statistically speaking there is a for-

fix)

A 4

of each input variable x;

. _ele 1
Independent and random definition /\

Evaluation of the engineering
formulation y = f(x,, x,, ..., x,)

Repeat N simulations,
generating a sample of N results of y

]

Calculate statistics of the sample of y values
(mean, standard deviation, failure probability,
histogram and best-fit probabilistic distribution

!

Increase the number of successive simulations
until stabilisation of the statistics values
and the shape of the probabilistic function

Figure 5. Main steps of the MCM simulations.
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mulation to estimate the number of MCM simulations,
assuming that an error o may occur, which is expressed by:

N

N :(ZMJ (8)

4o
where N is the desirable number of MCM simulations as-
suming that an error o in the results may occur; Z /2 is the
number of standard deviations around the mean value to
reach an error o/2 at each distribution tail; 7 is the number
of input variables.

This statistical formulation usually yields an enor-
mous number of MCM simulations N. For example, if an
error oo of 5 % is intended, Z is 2 standard deviations and as-
suming four input variables (n = 4), the number N of MCM
simulations estimated is over 25 billion. Therefore, com-
monly the criterion to verify the stabilisation of the MCM
statistics is observational, as shown in Fig. 7. In this case,
one can notice that 200,000 simulations are enough to stabi-
lise all statistics resulting from the MCM simulations.

Some important aspects related to the MCM results,
in particular to the failure probability calculated by the
frequentist formulation presented by Eq. 7, are worth some
comments. It is recommended that the failure probability
calculated from Eq. 7 should only be accepted if the number
N of MCM simulations is at least one order of magnitude
(10 times) greater than the inverse of the failure probability
calculated. For example, if p,is calculated as 107, it requires
at least 10° MCM simulations. Other common mistake in
reporting the failure probability calculated by the MCM is
to take it as zero, when after a certain number of simula-
tions N, no failure case is found. This does not guarantee
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Figure 7. Observational criterion to verify the MCM simulation
results stabilisation.

that p,is zero but, simply, that within the number of simula-
tions carried out, no failure event could be discovered by
that particular MCM simulation process. The best form to
report this result is that the failure probability is simply
smaller than 1/N (p,< 1/N). This recalls another problem re-
lated to the acceptance of the failure probability calculated
by the frequentist formulation (Eq. 7), when the number of
MCM simulations N is not large enough. This is quite com-
mon due to the enormous computational efforts required by
the MCM to evaluate many engineering formulations. In
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this case a sample of N results is obtained, but the results are
not stabilised and are not enough to evaluate the failure
probability. For this reason, a good alternative to evaluate
the failure probability is to assume that the best-fit proba-
bilistic distribution function derived from the sample histo-
gram is the best estimator for the real one, and calculate the
failure probability using this distribution. The best-fit tech-
nique can be done using the statistics calculated by Eqgs. 5
and 6 from the sample of MCM results and applying them
to different probabilistic distribution functions, choosing
the one that best-fits the histogram of MCM results (best-fit
by moments). Alternatively, the best-fit of the MCM results
can be done by minimising the square of the errors between
the histogram and different probabilistic functions, select-
ing the best-fit probabilistic function as the one with the
minimum square of errors (maximum likelihood estima-
tor), and, then, calculating its statistics, as described by Van
Gelder (2000). This best-fit technique is the most used in
commercial software. Other question commonly raised is
that if the best-fit technique should focus on the overall his-
togram or on the tail of the histogram where the failure
probability is calculated, as illustrated in Fig. 8. There are
no simple answers to these questions, but a best-fit tech-
nique of the overall histogram is preferred over the best-fit
of the histogram tail, simply because it fits the whole vari-
ability phenomenon and not a part of it.

In summary, the MCM is demanding, requiring the
complete definition of the probabilistic functions of input
variables and may need computational efforts to reach ac-
ceptable results, in function of the complexity of the engi-
neering formulation to be solved. In doing so, the outcome
results are also complete (statistics and definition of the
probabilistic function of the dependent variable) and can be
considered final and exact. However, in many cases, the
necessary computational efforts may be excessive or even
not acceptable for a realistic schedule of engineering tasks.

The alternative to overcome this problem is to use approxi-
mate probabilistic methods in place of the MCM, being the
most popular in geotechnical engineering the FOSM and
PEM.

The FOSM is a method that considers the first-order
approximation of the Taylor Series expansion applied to
the equation of the second statistical moment (variance). It
requires only the mean and standard deviation values of in-
put variables, but also returns only the mean and standard
deviation values of the dependent variable (performance in-
dicator). Considering some assumptions, such as the proba-
bilistic distribution functions of the input variables are
symmetric and these variables are independent among
themselves, the FOSM equations for the performance-indi-
cator mean and standard deviation values can be expressed
as:

E(y) =y =f(x,X;,....X,) (C))

V(y)zi((fxyj V) (10)

where E(y) is the mean value of the dependent variable y
(performance indicator); f1is the engineering formulation to
calculate the dependent variable y as a function of the inde-
pendent input variable x; X, are the mean values of the inde-
pendent input variables; V(y) is the variance value of the
dependent variable y; V(x,) are the variance values of the in-
dependent input variables x,; and (Oy/Ox,) are the partial de-
rivatives of the dependent variable y in relation to each
independent input variable x..

The mean value of the dependent variable y is given
by Eq. 9, inputting the mean values of the independent vari-
ables into the engineering formulation defined to calculate
the performance indicator. In other words, the method as-
sumes that the best estimator of the mean value of y is given
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by the function f evaluated using the mean values of the in-
put variables x,. In fact, this is a similar procedure when the
deterministic approach is adopted, calculating the perfor-
mance indicator using the mean values of input parameters
and loadings. The FOSM major difficulty is to obtain the
partial derivatives (0y/Ox,) of the engineering formulation
used to calculate y as a function of each independent input
variable (Eq. 10). In many cases, these partial derivatives
may be not easily determined or are even not possibly de-
fined. The problem was solved replacing the partial deriva-
tives by a numerical approximation (Christian et al., 1992,
1994, Christian, 1999, 2004; Baecher & Christian, 2003).
The partial derivatives intend to evaluate how the engineer-
ing function of y is affected by each input parameter; in
other words, they evaluate the mathematical weight of each
input parameter in the engineering formulation used to cal-
culate the performance-indicator variance. To do so, the
numerical approximation proposes to increase by a small
increment the value of each input parameter, independ-
ently, keeping the other input parameters at their mean val-
ues, and calculate a new value of the y. The numerical ap-
proximation of a certain partial derivative is given by:

Q_yi_y Ay,

ox, Ax, T A,

i

an

where y, is the new value of the y-function calculated with
the incremental value of a certain input parameter
(x, =X, +Ax,); y, is the mean value of the dependent vari-
able, given by Eq. 9; and Ax;, is a small increment added to
the mean value of each input parameter.

In the literature, this small increment given for each
input variable is usually reported as 10 % of its mean value.
In fact, the exact value of this increment is not relevant be-
cause it is only used to calculated the new value of the
y-function, and, then, to estimate the value of the partial de-
rivative around the mean value of dependent variable y,
taking the increment of the y-value and dividing it by the in-
crement of the input variable x,, yielding the dependence of
the dependent variable y per unit of that particular input pa-
rameter. Farias & Assis (1998) analysed the effect of the in-
crement size and concluded that the value of 10 % is
appropriate, but it could be any other value, except ex-
tremely small values, which could induce numerical errors
in evaluating Eq. 11, or very large values, which could erro-
neously evaluate the derivative when its shape departs to
far from a linear dependency between the y-function and
that particular input variable. In this case, the evaluation of
the partial derivatives by numerical approximation using
two points around the mean value of the dependent variable
y is highly recommended, and given by:

Oy _yi -y Dy,
Ox, Ax, Ax

i i

12)
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where y. is the new value of the y-function evaluated with
an incremental value of a certain input parameter
(x;, =X, +Ax,/2); y,; is the new value of the y-function
evaluated with a decremental value of a certain input pa-
rameter (x, =x, —Ax, / 2).

Figure 9 illustrates how the two-point evaluation of
the numerical approximation of the partial derivatives fits
much better for any shape of the derivative function of the
dependent variable y in relation to a particular input vari-
able x,. Duncan (2000) suggested the two-point numerical
approximation of the partial derivatives, using the incre-
ment and decrement of each input variable equal to one
standard deviation. The two-point numerical approxima-
tion technique requires a larger computational effort, since
the single-point numerical calculation implies N = n + 1
calculations of the y-function, where n is the number of in-
dependent input variables, and the two-point numerical ap-
proximation needs N = 2n + 1.

At the final evaluation of Eq. 10, the variance of the
dependent variable V(y) (performance indicator) is calcu-
lated by the summation of the product between the partial
derivatives and variances of input parameters, which means
that the y-variance is given by the sum of the mathematical
weight (partial derivative) multiplied by the statistical
weight of each input variable (its individual variance). This
type of calculation allows to estimate the individual weight
of each input-variable variance to the total y-variance, sim-
ply dividing them, usually reported in percentage (%), as
depicted in Fig. 10. This result helps understand the effect
of each input-variable variance in the total variance, allow-
ing to focus on those input variables that play a more impor-
tant role in the process. The final outcome of the FOSM is
only the mean and standard deviation values of the depend-
ent variable, but it also only requires these statistics of input
variables. The computational effort is very low, requiring
only N =n + 1 calculations for the one-point numerical ap-
proximation of the partial derivatives or N = 2n + 1 for the
two-point alternative numerical approximation. The main
disadvantage is that the method does not returns any infor-
mation on the type of the probabilistic function of the de-
pendent variable, which has to be assumed, and this is
required to calculate the failure probability for that perfor-
mance indicator.

4 N=2n+1

x;bx X Ax X

Figure 9. Numerical approximation schemes (one-point and
two-points), illustrating the better fitting of the two-point tech-
nique for derivative functions departing from linear dependency.
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The other alternative probabilistic method is the Point
Estimate Method (PEM), derived by Rosenblueth (1975;
1981). The PEM is based on the Gaussian quadrature
(Christian & Baecher, 1999; Baecher & Christian, 2003) to
numerically calculate the moments of the probabilistic dis-
tribution function of the dependent variable y, based on all
possible combinations of two estimate points of the input
variables. For each input variable x,, two estimate points are
defined, being its mean value plus and minus one standard
deviation value, such as x; =X, +ox; and x; =X, —ox,.
So that, the PEM also only requires the mean and standard
deviation values of all input variables. Once the two esti-
mate points are defined for all input variables, the engineer-
ing function for the dependent variable y is solved N times,
considering all possible combinations among the estimate
points of all input variables, what gives N = 2" calculations
(where n is the number of input variables). This means that
the PEM generates a sample of N results of the dependent
variable y. Then, the statistical moments of the dependent
variable are calculated using descriptive statistics for dis-
crete values, as given by Eq. 5 for the mean value and Eq. 6
for the standard deviation value, simply replacing N by 2".
Moments M3 (symmetry) e M4 (kurtosis) can also be calcu-
lated using similar equations. These expressions are for in-
dependent input variables and corrections based on the
correlation coefficients may be applied when these vari-
ables are dependent among themselves. The PEM also only
returns the mean and standard deviation values, and other
statistical moments, as it only requires similar data of the
input variables. As the FOSM, the PEM does not yield any
information on the type of the probabilistic function of the
dependent variable (performance indicator), which has to
be assumed to calculate the failure probability.

Table 2 presents a comparison of these probabilistic
methods. The MCM and PEM generate a sample of results
of the performance indicator y (dependent variable), allow-
ing each individual calculation to explore the most critical
response for that set of input parameters, including possible
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changes in the failure mechanism, which means that multi-
ple mechanisms may be considered. The final variance of
the dependent variable is calculated from all their individ-
ual results in relation to its mean value. In this aspect, the
FOSM is more limited, since it calculated a unique failure
mechanism for the mean values of input parameters and the
final variance is evaluated only in relation to this mean-
value failure mechanism of the dependent variable. There
are several publications in the literature (for instance, Grif-
fiths & Fenton, 2007), comparing these methods and their
applicability in geotechnical engineering. In general, the
FOSM results indicate a lower failure probability than the
other two methods, exactly because it explores less the scat-
ter of input data and potential failure mechanisms. The
HPEM presents the advantages of the FOSM in terms of the
low number of required simulations and the influence of
each input parameter in the final result, and explores all
variability of parameters and mechanisms as done in the
PEM, yielding similar reliable results as the PEM (Gitirana,
2005; Franco, 2019; Franco et al., 2019; Yokozawa, 2019).
In summary, probabilistic approach and quantitative
evaluation allow obtaining the failure probability value of a
certain performance indicator. This can be done by Event
and Fault Tree Analyses, when the performance indicator
in not well-defined by an engineering formulation (empiri-
cal or analytical formula, or numerical solutions), or, on the
contrary, by probabilistic methods, when the engineering
formulation is well set for that performance indicator. As it
can be noticed, the whole probabilistic approach and meth-
ods are not perfectly defined and some assumptions might
be needed. However, estimations of the variabilities of in-
put parameters yield better and more complete engineering
results than the assumptions that input parameters and load-
ings are taken as constant values and the final result is
unique, as commonly done in the deterministic approach.
Paraphrasing Warren Buffett and adapting his thought, it is
preferable to have an approximate probabilistic result than
a precise deterministic one that is certainly wrong. This re-
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Table 2. Comparison of the most common used probabilistic methods in geotechnical engineering (Assis et al., 2018, 2019).

Probabilistic Advantages Disadvantages

method

Monte Carlo Final results may be exact Requires complete probabilistic functions of all input vari-
(MCM) ables

Obtains all statistics and the probabilistic function May imply considerable computational effort

of the dependent variable

First Order Second Very fast computations
Moment (FOSM)

Requires only the mean and standard deviation
values of input variables

Obtains the influence of each input variable on
the final variance of the dependent variable

Point Estimate Computational efforts are reasonable
(PEM)

Requires only the mean and standard deviation
values of input variables

Requires the assumption of a probabilistic function for the
dependent variable to evaluate its failure probability

Final variance is limited to the influence of the variances of
input variables around the mean value (does not change the
failure mechanism for each set of input parameters)

Requires the assumption of a probabilistic function for the
dependent variable to evaluate its failure probability

inforces that probabilistic results in terms of failure proba-
bilities should not be taken as exact numbers, but as an
indication of their magnitude, mainly focusing firstly on
their order of magnitude (power of 10, for instance 10" or
10 and, then, on their decimal digits, avoiding to report
non-significant digits (5 x 10 is preferred to 5.15 x 107).
Following similar logic, very small calculated probabilities
may not have enough accuracy, so that it is recommended
to report 107 or 10” as the lowest possible failure probabil-
ity for geotechnical structures (this means that if any lower
failure probability than those values is calculated, it is re-
ported at the suggested lowest limit), as suggested by
Mitchell (2014).

Once the reliability index or failure probability for a
certain performance indicator is determined, the question is
how to consider their values within the scope of engineer-
ing decision making. A first and easy attempt is to correlate
the results of the probabilistic approach to the conventional
concepts of safety margins and factors, commonly used in
conventional engineering (deterministic approach). This
leads to erroneous findings, simply because the variabilities
of input data are not considered in this correlation. The only
and truly alternative is to integrate the results of the proba-
bilistic approach, in particular the reliability index or fail-
ure probability, into the concept of risk, as defined and
applied to engineering.

3. Risk metrics and analyses

The risk concept, as defined in engineering, comes
from an uncertain event that, if it happens, may lead to a
structure behaviour different from that forecasted and ex-
pected, generating consequences from this unexpected be-
haviour, which can be better or worse than those forecasted.
Uncertain events that may lead to better consequences are
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called opportunities and those causing worse and undesir-
able consequences are hazards. This risk concept implies
two main variables that are taken together, the probability
of occurrence of the uncertain event and the potential con-
sequences caused, if the uncertain event occurs (damage,
impacts and so on). It is very important to understand and
consider this engineering risk concept clearly, to ease the
communication among all stakeholders and the society
about a certain structure. This reminder is even more im-
portant considering that colloquial language usually takes
the word risk as synonymous of chance, likelihood, proba-
bility (for instant, what is the risk to have a storm today?).
The engineering concept of risk has to take, both, the proba-
bility of occurrence and potential consequences. This con-
cept is well accepted implicitly in our mind. For instance,
when deciding to take a plane, the consequences of a crash
is disastrous (loss of all lives on board), but it is usually ac-
cepted because the probability of a crash (failure) is very
small (taken as 10°to 10”). The same should apply to all en-
gineering structure. There is no engineering structure with
risk equal to zero, there is always a failure probability to all
structures. In the same manner as the decision making to
take the plane, the failure probability has to be analysed in
conjunction with the potential consequences of an engi-
neering structure failure, in case it occurs, and to be ac-
cepted by engineers and society if the failure probability
and consequences are within certain limits (acceptance and
tolerance curves).

A first and easy approach to carry out a risk analysis is
by qualitative methods, where the failure probability and
consequences are described by adjectives, according to
their susceptibility and severities. An example of this quali-
tative method is the risk index, which results from the mul-
tiplication of the probability and consequence factors
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(Table 3). This is the method currently adopted by the dam
safety legislation in Brazil. Several characteristics of the
dam are considered using a point summation system to
classify its susceptibility to failure in three categories (high,
moderate and low). Similarly, the potential consequences
sum points considering the presence of people and environ-
ment downstream, size of the reservoir and so on, also clas-
sifying it in three categories (high, moderate and low).
Table 4 presents the risk categories (A, B and C) that con-
sider the susceptibility to failure of the dam and its potential
damage (consequences). It is important to note that, in the
dam safety legislation in Brazil, the term risk unfortunately
is erroneously applied only to the failure probability of the
dam, and not to the joint product of failure probability and
its consequences, which must be corrected for ensuring pre-
cise risk communication among all.

The evolution from qualitative to quantitative analy-
ses of risk requires a risk metrics that could be applied to all
type of engineering structures, including the different types
of consequences. The expected outcome from the engineer-
ing risk concepts yields to:

R=p,-C (13)

where R is the engineering risk; p, is the failure probability
of the engineering structure; and C are the potential conse-
quences due to its failure, if it occurs.

Equation 13 can be expanded to include cases where
the failure is given by a sequence of independent events, as

defined in Event Tree Analyses, leading to the final failure
probability as a result of the product of individual event
probabilities towards the structure failure. Also, the conse-
quences due to a failure of complex engineering structures
involve different types of impacts, which are usually cate-
gorised in spheres of consequences, such as those related
to:

* The structure itself - all costs due to the physical loss of
the structure (works for cleaning the failure and rebuild-
ing the structure) and the outgoing profit during the pe-
riod of time that the structure is not operating;

e Health and Safety of People — costs due to medical treat-
ments of injuries and compensations for life losses of
workers and outsiders;

e Public and private properties — indemnity costs for par-
tial or total losses of vehicles, housing, commercial,
business, educational, industrial and agribusiness facili-
ties, and all types of infrastructure (roads, bridges, water
supply, sewage treatment plants, etc.);

e The environment — indemnity and recovery costs of en-
vironmental protected areas and parks, woods and for-
ests, rivers and lakes, and so on.

e Reputational Damages — this is usually related to the
losses of the company value, for instance in the stock
markets, and future legal difficulties and constraints,
such as obtaining of permits to engage new projects, or
to enlarge, update or keep operation of on-going facili-
ties.

Table 3. Example of Risk Index to qualitatively carry out risk analyses.

Risk Index Consequence Factor
Probability and Insignificant Low Moderate High
Consequence Matrix 1 2 3 4
Probability Factor Insignificant 1 2 3 4
1
Low 2 4 6 8
2
Moderate 3 6 9 12
3
High 4 8 12 16
4
Table 4. Example of qualitative risk analysis for evaluating dam safety in Brazil.
Risk Category Potential associated damage (consequences)
Failure probability High Moderate Low
High A B C
Moderate A C D
Low A C E
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All these consequences may happen and have to be
summed, considering that each type of consequence has its
own vulnerability (ability of a particular consequence to
occur due to the structure failure). One point that com-
monly arises is how to sum different types of consequences.
The best and most efficient alternative is the monetisation
of the consequences and sum their values. For this, it is nec-
essary to establish methodologies on how to monetise each
type of consequence, which is not a complicated issue, ex-
cept when dealing with life losses of people. Despite all as-
pects related to social, culture, religion, economic income,
age and so on, it is highly recommended to not define a
value for people lives, but simply take the value paid for
compensation of life loss, with no difference among peo-
ple, no matter how different they might be. In other words,
each life loss will be compensated by the same amount, de-
spite age, gender, education, social or professional posi-
tion, and so on. As people life losses bring an enormous
impact in the society, it is recommended to assume the
highest compensation value possible, in order to make peo-
ple lives the one most important or one of the most impor-
tant consequences in the risk calculation. In doing so, the
engineering risk expression becomes:

R$)=p, CO=[]p; 2 p,C,® (14)

where R($) is the monetised Vah;e of the engineering risk;
p,, are the individual failure probabilities of serial events
leading to the final failure of the engineering structure,
which are multiplied; p, are the vulnerabilities (value from
zero to 1) for each type of consequence (when equal to 1
means that that consequence will happen, if the failure oc-
curs); C,.($) are the monetised value for each type of conse-
quence.

As examples of consequence monetisation, Oboni &
Oboni (2020) reported that the Funddao Dam failure, oc-
curred in Mariana, Brazil, in 2015, may cost over US$ 40
billion to the owners (BHP and Vale mining companies) to
cover all spheres of consequences and the oil spill that hap-
pened in the Gulf of Mexico, in 2010, where 5 million bar-
rels leaked into the ocean, has costed to BP company
around US$ 65 billion in controlling, cleaning and recovery
measures, and penalties.

The major advantage of risk monetisation is that the
risk value of a certain engineering structure can be added to
its own construction cost or value, leading to the concept of
overall cost, given by:

0C$) =CCS)+RS) (15)

where OC($) is the overall cost of a certain engineering
structure or alternative; CC($) is the construction cost or
value of the structure or alternative; and R($) is the mon-
etised risk value for that particular structure or alternative.

The overall cost is a very powerful concept, because
by integrating the risk for each engineering alternative, it
allows a better analysis of all engineering alternatives. This
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certainly avoids the common mistake in simply selecting
the lowest price offer, which probably presents higher risks
(quality, maintenance, durability, contractor bankruptcy
and so on). On the other hand, a more expensive offer for
the structure could indicate better engineering data, design
and construction, leading to lower risks. And an easy solu-
tion to solve this dispute is to analyse the overall cost (Eq.
15) and take it as a decision-making tool, as done in the bid-
ding for the contractors of a subway line in Copenhagen,
Denmark, as shown in Fig. 11.

4. Risk management applied to geotechnical
structures

As risks can be qualified or quantified, the following
task is to implement a risk management system. Figure 12
presents a scheme of sequence tasks for risk management
(ABNT, 2018) that goes from the identification of the risk
event (uncertain event that may cause risk), to risk calcula-
tion and evaluation, to the measures for risk elimination or
mitigation, if necessary. This is a cyclic scheme, indicating
that risks have to be re-evaluated from time to time, and
when any changes in circumstances occur.

The first task of the risk management scheme
(Fig. 12) is the Identification of Risk Events. This can be
done initially by all involved professionals (owners, de-
signer, contractors, operational teams) or with the help of a
board of expert and experienced engineers, using provoca-
tive methodologies, such as SWOT (Strengths, Weaknes-
ses, Opportunities and Treats), Delphi or Brainstorming.
Examples of risk events are slope instability, piping, over-
topping and liquefaction for an earth or tailings dam. Each
type of geotechnical structure presents characteristic risk
events. When risk events have been identified and listed, it
is recommended that they are organised in order from the
highest to the lowest potential risks. Then, each risk event
identified has to be qualified in terms of causes, likelihood
of occurrence, potential impacts and possible solutions, and
then it has to be recorded in the Risk Register. The most im-
portant annotation for each risk in the Risk Register is the
nomination of its technical responsible and its owner. The
Risk Responsible is usually a technical and competent pro-

B Upgrade &
Other Costs

ORisk Cost

Cost

M@ Bid Price

T1 T2 T3 T4 TS5 T6 PO

Figure 11. Concept of overall cost for deciding the bidding of a
subway line (Eskesen et al., 2004).
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| Identification of Risk Events|

| Risk Calculation |

v

| Comparison of Risks with the Risk PoIicy|

v

| Risk Evaluation and Possible Solutions|

v

| Implementation of the Risk Solution |

Figure 12. Risk management scheme.

fessional in charge of taking care and following the risk for
all its existence, contracting and implementing risk solu-
tions, and monitoring them. The Risk Responsible has to do
or follow the risk calculation and evaluation as described in
Fig. 12 and report the risk status to the Risk Owner. The
Risk Owner is a professional who has the power in the com-
pany hierarchy to authorise budget for implementing the
necessary risk solutions as demanded by the Risk Respon-
sible. The Risk Owner is the ultimate professional in charge
of the risk management. Despite these nominations being
essential for an efficient risk management in any company,
unfortunately, in many cases, the whole process failed be-
cause some people may not feel comfortable with this
transparency required for the risk management process.
The most common mistake is the attempt of higher hierar-
chy officials to impose the risk ownership to technical pro-
fessionals that do not have power to decide on budget
issues.

The next step of the risk management process is the
Risk Calculation, which has already been discussed in this
paper, in terms of, both, the quantification of the failure
probability by event and fault tree analyses or probabilistic
methods, and the monetisation of all different types of con-
sequences. Once the risk components are calculated, they
are usually plotted in the Risk Diagram, also called
Farmer’s diagram, which is a bi-log graphic, with the value
of the consequences in the x-axis and the failure probability
in the y-axis (Fig. 13). As engineering risk is defined by Eq.
13 or 14, in a bi-log graphic, the product between failure
probability and consequences becomes a sum of the logs of
these variables; then, any diagonal line represents a certain
risk value. For instance, taken the same diagonal with a cer-
tain risk value, this risk value can be achieved by a higher
failure probability and lower consequence value, or vice
versa. One can also note that risk mitigations, moving from
a higher risk value (upper diagonal) to a lower one, can be
done using active engineering solutions, which decrease
the failure probability of the structure (vertical arrow), or
by passive solutions, which decrease the consequence va-
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Value of the Consequences (10* BRL)

Figure 13. Risk (Farmer’s) diagram used to plot risk values.

lue (horizontal arrow). For instance, considering a slope
stability problem with high risk, the solution could be any
stabilisation measure (active solution), such as drainage or
anchors, that increases the safety factor and, consequently,
reduces the failure probability of that slope, or the installa-
tion of barriers that does not affect the safety of the slope,
but minimises the consequences in case the slope fails.

When plotting risk values in the Risk Diagram, one
immediate question is raised, which is the level of accept-
able risks. This is defined by the Risk Policy that estab-
lishes the acceptance zone (usually painted in green col-
our), the intolerable zone (red colour) and the attention
zone (yellow colour), also referred as ALARP, which
stands for as low as reasonably practical. Originally this
denomination was established in the United Kingdom for
risks whose engineering complexity, time and cost for re-
ducing them were not worth or unreasonably high. All ef-
forts should be done to reduce these risks to a level as low as
possible, considering reasonable engineering solutions, ti-
me and costs. If they still remain at a level considered high,
but no more engineering solutions are reasonably practical,
these risks have to be closely monitored and potentially af-
fected consequences, especially people, trained to follow
safe protocols if warned previously to any major problem.
In practice, the zone between the acceptance diagonal line
(upper limit of the accepted or insignificant risks) and the
tolerance diagonal line (lower limit of the intolerable risks)
is preferably named as attention zone, despite the concepts
of ALARP being still valid.

There is no consensus for the limits of these zones,
but considerable advances have been achieved in the last
decades and years, mainly led by the Anglo-Saxon coun-
tries (UK, Australia, USA, The Netherlands and so on). The
first application of the Farmer’s diagram showing limits of
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tolerable risks for geotechnical structures was presented by
Whitman (1984). Since then, acceptance and tolerance cur-
ves have been proposed, and more recently they became
stricter, more severe, indicating lower risk acceptance by
the society. Presently, most risk criteria limit the accep-
tance zone of one potential life loss (consequence) to a
probability of 10" to 10° (FEMA, 2015; Morgenstern,
2018), as shown in Fig. 13, assuming a life loss compensa-
tion of R$ 10 million (Brazilian Real - BRL). Some Risk
Diagrams show explicitly an additional x-axis with the
number of potential life losses, due to its importance and
concern to society, so that one can see the total consequence
value, but, separately, also the number of potential life
losses. The tolerance curve is usually assumed one or two
orders of magnitude above the acceptance diagonal line,
depending on the Risk Policy of the company, guidelines or
standards (of professional societies) or legislation. In Bra-
zil, there are no guidelines, standards or legislation pre-
scribing acceptance and tolerance limits, which recalls the
necessary and important role to be taken by professional so-
cieties and regulatory agencies. More recently, two com-
plementary concepts have been applied to the definition of
acceptance and intolerance zones, which is a truncation of
the maximum failure probability accepted for each type of
engineering structures and a truncation of the maximum
consequence value accepted by the company owning the
engineering structures. The first truncation is a horizontal
line in the Risk Diagram that limits the maximum failure
probability. In practice, the diagonal line that defines the
acceptable risk limit cannot continue its trend and failure
probabilities higher than that value indicated by the trunca-
tion line for maximum probability are not acceptable. The
second truncation is a vertical line in the Risk Diagram that
limits the maximum consequence value accepted by the
company, otherwise, in case that failure occurs, the com-
pany could not deal with that loss amount, indicating higher
chances of bankruptcy. This truncation for consequence
value is usually calculated based on the company annual
profit or as a percentage of its total value. Oboni & Oboni
(2020) present a very complete discussion on all types of
acceptance and tolerance risk criteria. Figure 14 shows an
example of risk zones with complementary truncation
lines.

In addition to the acceptance and tolerance limits, the
Risk Policy, which is defined by the highest hierarchy of
the company, has to establish how the risk information is
communicated among the company hierarchy, according to
risk levels, and to all stakeholders and authorities. It has to
be revised periodically, taking into consideration the past
experience of risk management and new demands from the
society.

Having the risk policy defined and the structural risks
calculated, the Risk Responsible and Owner have all ele-
ments for risk evaluation and making decisions of the most
suitable treatment solutions for the risks. However, in com-
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Figure 14. Risk Diagram showing an example of acceptance and
intolerance zones using complementary truncations for maximum
failure probability and consequence value.

plex structures or large enterprises with several structures,
which demand a large number of people involved in the risk
management, there are chances of lack or miscommuni-
cations among professionals, stakeholders and the society
that may jeopardise the whole process. In this case, it is
highly recommended an intelligent risk management pro-
cess, as depicted in Fig. 15.

An intelligent risk management system is guided by
the Risk Policy defined by the highest hierarchy of the com-
pany, or by guidelines or standards prescribed by profes-
sional associations or legislation. The Risk Management
Office is in charge of executing the Risk Policy inside the
company, providing personnel training and methodologies
for all processes related to risk management. It should su-
pervise all risk management processes done by company

| Risk Policy |

| Risk Management Office

Risk
Management

Communication
Management

Risk
Register
Figure 15 Example of the structure of an intelligent risk manage-

ment system (Assis et al., 2019).
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staff or contracted from outside companies (in this case, it
has to specify the terms of reference for these works done
by consultant companies). It is important that the Risk
Management Office be directly linked to the highest hierar-
chy of the company, in order to be independent of any inter-
mediate control or inappropriate censorship. The Risk
Management involves all steps of risk identification, calcu-
lation and evaluation, as already described in this paper and
illustrated in Fig. 12. Each risk identified and calculated has
to be annotated in the Risk Register, including the nomina-
tion of the Risk Responsible and Risk Owner. Any change
in the risk is written in the Risk Register, which works as an
actual register of the risks for all their existence. When the
risk is in the Risk Register, the Communication Manage-
ment reads it and disseminates its information to all profes-
sionals involved and company hierarchy officials, accord-
ing to its level and zone in the Risk Diagram (Figs. 13 and
14). This communication is done automatically by an IT
software, which is programmed according to the definitions
of the Risk Policy. It is important to note the need for an au-
tomatic communication to avoid any personnel interfer-
ence, provoking lack or miscommunications. In some ca-
ses, risk communication should go outside the company,
reaching stakeholders and the society (for instance, civil
defence and state authorities). More details on an intelligent
risk management system can be found in Assis e al.
(2019).

5. Examples of risk management applied to
geotechnical structures

The first example presented in this paper is a tailings
dam, where the Event Risk Identification stage recognises
four potential failure modes: 1) slope instability; ii) piping;
iii) overtopping; and iv) liquefaction. All of them, if they
happen, could lead to severe damage to the structure and,
consequently, to downstream population, facilities and en-
vironment. For each possible failure mode, a performance
indicator and a failure criterion have to be selected. For in-
stance, the factor of safety (FS) is taken as performance in-
dicator for the slope stability and liquefaction and its
critical value indicating failure (failure criterion) is set to
FS smaller than 1. For overtopping, the water level on the
dam reservoir could be chosen as performance indicator
and its critical value could be set as the topographic level of
the dam crest (in this case, it is assumed that if overtopping

Table 5. Example of risk analysis applied to a tailings dam.

occurs, the downstream slope is eroded, leading to the
whole structure failure). All these three failure modes have
engineering formulations to evaluate their performance in-
dicators, so that probabilistic methods are applied to calcu-
late their failure probabilities. For piping, the performance
indicator is not so evident and there is no clear engineering
formulation to evaluate the whole process, considering the
hydraulic gradient, characteristics of the soil to be eroded
and to progressively evolve to piping formation, until lead-
ing to dam failure. Therefore, event and fault tree analyses
are used to estimate the failure probability due to piping, as
exemplified by Figure 4 and described in detail by Fell et
al. (2015) and Caldeira (2018). The failure probabilities for
these four possible failure modes are presented in Table 5.

It is worth a word on the FS statistics and its failure
probability obtainment. The engineering formulation cho-
sen to evaluate the FS was the Spencer Method and the
probabilistic method was the Monte Carlo (MCM was pre-
ferred to be potentially exact and with a computational ef-
fort for this type of analyses considered acceptable; it takes
about 2 days in a standard configuration computer for run-
ning the full analysis). For each set of input parameters,
taken for consolidated and drained conditions, a critical
failure mechanism was searched and its FS calculated.
Many commercial software set as default a fixed failure
mechanism obtained by the mean values of input parame-
ters and, then, do all dispersion analyses using this failure
mechanism, only varying the values of input parameters.
This is not appropriate since, in geotechnical engineering,
many failure mechanisms are dependent on geotechnical
parameters, and may be changing their shape and position
inside the ground mass. Therefore, careful setting of the
software is mandatory in order to make sure that the MCM
is fully exploring all possibilities of parameter variabilities
and failure mechanism options. Nowadays, there is a trend,
with promising advances, for searching for alternative
methods to the MCM, which are faster, require much less
computational effort, and provide similar reliability of the
results.

Other important aspect to mention is related to the
evaluation of the FS and its failure probability due to lique-
faction. The condition for liquefaction to occur assumes
that actions happened, called liquefaction triggers, which
can be static or dynamic, that changed soil conditions from
drained to undrained behaviour. Then, the stability analy-

Failure mode Failure probability (p)  Consequences (BRL($) x 10°) Risk (BRL($) x 10%
Slope instability 107 3,000-4,000 0.03-0.04
Piping 5% 10* 3,000-4,000 1.5-2
Liquefaction 107 4,000 4
Overtopping 10" 3,000-4,000 0.3-0.4
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ses are executed using undrained strength parameters for
submerged materials that are potentially susceptible to lig-
uefaction. As described, the liquefaction instability may
only occur if a series of independent events happens suc-
cessively: first the trigger event has to happen, followed by
the undrained failure of the structure at its peak-undrained
strength values, and, finally, the structure failure overcom-
ing its liquefied undrained strength. So, the failure proba-
bility due to liquefaction is given by a product of three
failure probabilities (the occurrence probability of the trig-
ger event, the failure probability using peak and un-
drained-strength parameters and the failure probability
using the liquefied SUeNGH: 1, i =Py X Dy st
Py i)+ LhE €valuation of failure probabilities using peak
undrained and liquefied strengths is similar to the proce-
dure used for any slope stability analysis. The main un-
known in this calculation is the definition of the trigger
event and estimation of its occurrence probability. For dy-
namic events, the most common trigger is related to earth-
quakes and, in this case, it is possible to study or measure
their magnitudes and frequencies, determining a certain
magnitude for a specific time frequency, which is taken as
its occurrence probability. For static trigger events, this
evaluation is much more complicated or unknown. Com-
monly, its occurrence probability is estimated based on the
frequency of accidents already registered for the same type
of geotechnical structure.

For evaluating the consequences due to a dam failure,
dam break analyses, which are hydraulic studies, have to be
carried out, implying in the following considerations:

* The amount of reservoir mass that will outflow due to the
dam breach has to be assumed or estimated; in case of
water reservoir, 100 % of the total mass is usually taken,
but in case of tailings reservoir, more complex assump-
tions or studies are necessary, and common values range
from 33 to 100 %.

e The hydraulic breach formation in the dam, due to slope
instability, piping, liquefaction or overtopping, requires
assumptions of its geometry (shape, width and depth)
and evolution time; this is important to evaluate how
much and how fast the reservoir mass flows.

* As the reservoir mass flows downstream, its propagation
is extremely influenced by fluid parameters, which could
be water or slurry (mix of water and solids), topography,
which requires a precise digital model of the terrain, and
roughness characteristics of the terrain surface, which is
related to the type of vegetation or soil use, such as green
field, pasture for cattle raising, paved surfaces, water
bodies, building structures and so on.

e The results of dam break analysis provide information on
the likely flooded area, including, for each geographical
position, the flood depth and velocity, and the flood ar-
rival time; the product of flood depth and velocity gives
an estimation of the energy of the flow mass, called hy-
drodynamic risk or flood hazard factor, which is related
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to potential damage (Fig. 16), and the flood arrival time
is extremely helpful for preparing emergency plans, in-
cluding establishing evacuation routes and training peo-
ple.

e These results are overlapped with all information related
to population, housing, educational, commercial, indus-
trial and agribusiness facilities, environmental protected
areas and parks, and so on, using databases available in
governmental agencies (for instance, the database of the
Brazilian Institute for Geography and Statistics — IBGE,
or similar ones).

e To verify potential damage, the hydrodynamic risk
(flood hazard) factor for each geographical position is
checked against the occupation and use of that area; for
each type of occupation and use, there are threshold lim-
its or vulnerability curves of hydrodynamic risk (flood
hazard) factors that indicate partial or total loss, or fail-
ure, applied to people, vehicles, different types of build-
ings, and so on (Fig. 16). Flood hazard criteria and
vulnerability curves are discussed in detail by AIDR
(2012) and Oboni & Oboni (2020).

* The final result is the inventory of all potential losses and
damages, which are monetised using the social and eco-
nomic values registered in the governmental databases;
an important point to discuss is the possibility to have or
not any warning prior to structure failure, which may af-
fect enormously the number of life losses; this depends
on the type of failure mode and on the efficiency of the
emergency plans, including training, drills and full trans-
parency of the risk information.

The consequence values of this dam failure example
are shown in Table 5. All failure modes, except liquefac-
tion, present two values, the first one, considering a warn-
ing at least 4 h before the dam failure, and the second one,
assuming warning at the failure moment. For the liquefac-
tion failure mode, as it happens suddenly, the only option is
the warning at the failure moment. As one can conclude
from Table 5, the highest risk in this example is due to lig-
uefaction and this highest risk value should be the one plot-
ted in the Risk Diagram for that particular structure.

The second example is derived from the feasibility
studies of an urban tunnel for a metro system presented by
Alarcén-Guerrero (2016). Other researchers have studied
risk analysis and management applied to tunnelling as Ein-
stein (1996), Sturk e al. (1996), Shahriar et al. (2008),
Meng et al. (2010), Sousa (2010), Mollon et al. (2013),
Jarek (2016) and Napa-Garcia et al. (2017). The perfor-
mance indicator chosen by Alarcén-Guerrero (2016) was
the distortion angle, defined by the difference of settle-
ments estimated for two locations divided by their distance.
The failure criteria prescribed, in general, a limit value of
1:300 for partial structural damages and a critical value of
1:100 to total structural damages. However, these limit val-
ues could change depending on the type and age of the
structures, since the metro line runs through different nei-
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Figure 16. Results from dam break analyses in terms of flood height and flow velocity, resulting in hydrodynamic risk factors and dam-

age criteria.

ghbourhoods, ranging from historical and old buildings to
very modern skyscrapers. The engineering formulation was
the tunnelling-induced settlement calculation by 3D nu-
merical simulations, using the Finite Element Method. In-
put variables include deformability and strength parameters
for all geologic lithotypes, water table, tunnel geometry and
position inside the ground, and tunnelling and support sys-
tem parameters related to conventional and mechanised
methods. As the 3D numerical simulations impose enor-
mous computational efforts, the use of the MCM was not
feasible, leading to the adoption of approximate probabilis-
tic methods. Also, the number of input parameters was ini-
tially tremendous, which could cause computational prob-
lems even to some approximate methods. So, as a first step,
the FOSM was applied to identify the most relevant input
variables to the performance indicator (settlement and con-
sequently the distortion angle) variance. Then, with the
number of input variables limited according to the FOSM
findings, the PEM was carried out to calculate the statistics
of the performance indicator. Finally, the failure probabil-
ity was estimated assuming a Gaussian distribution for the
dependent variable.

The estimation of the consequence values considered
the tunnelling-induced damages to all structures and ac-
cording to their failure criteria (historical and cultural buil-
dings, conventional housing, low-height buildings and mo-
dern skyscrapers), consequences were estimated and
monetised. Vulnerability probabilities (ability to suffer da-
mage) were applied to people according to their age and po-
sition inside buildings, and to the type of structure and
foundation. The final result is a risk-zone map indicating

330

risk acceptance and intolerance for the chosen tunnelling
method, as shown in Fig. 17. Indeed, risk management is a
powerful tool for decision making.

6. Closing remarks

This paper intends to bring the theory of risk manage-
ment to practical applications in geotechnical engineering,
consolidating concepts, clarifying procedures and discuss-
ing openly its difficulties and trends. Most comments, rec-
ommendations and conclusions have been already written
along the text, so that only the most relevant ones are listed
here.

Probabilistic approach and risk analyses and manage-
ment bring additional and helpful information, challenging
the conventional decision making in engineering, breaking
paradigms, but requiring training, culture and setting new
acceptance and tolerance criteria.

Risk management in complex structures and in enter-
prises with different types of structures requires risk quanti-
fication and monetisation. In doing so, the concepts of
monetised risk and overall costs become a powerful deci-
sion tool for evaluating different alternatives of engineer-
ing solutions or structures.

Preliminary qualitative risk analyses can play an im-
portant role in qualifying risk events and organising them in
a priority list, recommending those to be submitted to a
more detailed risk evaluation, using quantification and
monetisation methodologies.

Monetised risks are efficient tools for decision mak-
ing, because a common language is used and understood by
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Figure 17. Risk acceptance and intolerance zones for an urban tunnel of a metro system (Alarcén-Guerrero, 2014).

all stakeholders, and may be used as metrics for contingen-
cies, insurances and security deposits.

Monetised risks allow to aggregate all corporate risks
(Assis et al., 2019), despite their types and structure differ-
ences, leading to a unique risk value for the whole com-
pany.

Risks, that are evaluated for a period of time (for in-
stance, annually) and may be recurrent along time, have to
be estimated for the life span of that engineering structure,
which yields the chance to have a failure during the entire
structure lifetime.

Risk management is not a protection shield against all
accidents, it does not avoid all failures, but it is an efficient
tool that helps control and diminish them, and minimise
consequences, if they occur.

Risk management is a tool towards a better engineer-
ing and, when done correctly and communicated transpar-
ently to all professional and stakeholders, it is essential to
discuss new projects, their benefits and risks, leading engi-
neering to regain its paramount role for the needs of modern
societies.
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Appendix

Assis

Table A1. Suggested values of Coefficients of Variation (CoV) to some geotechnical properties.

Geotechnical properties

Range of CoV (%) and most likely = References

value
Unit weight y 3-7;< 10 Harr (1987); Kulhawy (1992); Uzielli et al. (2007)
5
Moisture content w 8-30 Uzielli et al. (2007)
20
Atterberg limits w,, w, 6-30 Phoon & Kulhawy (1999a and 1999b); Uzielli et al.
(2007)
20
Void ratio e and Porosity n 7-30 Uzielli et al. (2007)
20
Cohesion ¢ 20-80 Baecher & Christian (2003)
40
Undrained strength Su 13-40 Harr (1987); Kulhawy (1992); Lacasse & Nadim

Undrained strength ratio Su/c *

Friction angle ¢

Deformability modulus E,

Coefficient of consolidation c,

Index of compression Cc

Overconsolidation ratio OCR

Coefficient of earth pressure at rest K

Coefficient of permeability K

SPT blowing count N,

CPT mechanical g,

Triaxial UU — 10-30
Triaxial CU — 20-55
Triaxial CIU — 20-40
25
5-15
10
2-13;5-15

10
10-30
20
33-68
50
10-37

25
10-35

20
40-75
50
68-90; 130-240; 200-300

200
15-45; 25-50
30
15-37

(1997); Phoon & Kulhawy (1999); Duncan (2000);
Uzielli et al. (2007)

Harr (1987); Kulhawy (1992); Duncan (2000)

Harr (1987); Kulhawy (1992); Baecher & Christian
(2003); Uzielli et al. (2007)

Baecher & Christian (2003); Mollon et al. (2012)

Duncan (2000); Uzielli et al. (2007)

Harr (1987); Kulhawy (1992); Duncan (2000);
Uzielli et al. (2007)

Harr (1987); Lacasse & Nadim (1997); Duncan
(2000); Baecher & Christian (2003); Uzielli ef al.
(2007)

Phoon & Kulhawy (1999)

Harr (1987); Benson et al. (1999); Duncan (2000);
Baecher & Christian (2003); Uzielli et al. (2007)

Harr (1987); Kulhawy (1992); Uzielli et al. (2007)

Harr (1987); Kulhawy (1992); Uzielli et al. (2007)
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Geotechnical properties

Range of CoV (%) and most likely ~ References

value

CPT ¢,

CPT electrical g,

DMT (resisténcia de ponta) g,,,,,

Vane Test VST S,

Pressuremeter PMT P,

Pressuremeter PMT E,,,

Clay 20-40
30
Sand 20-60
40
Clay < 20
10
5-15
10
5-15
10
10-20
Clay 10-40
25
Clay 10-35
25
Sand 20-50
35
Sand 15-65
40

Harr (1987); Kulhawy (1992); Uzielli ez al. (2007)

Harr (1987); Kulhawy (1992); Uzielli et al. (2007)

Kulhawy (1992)

Kulhawy (1992); Uzielli ez al. (2007)

Uzielli et al. (2007)

Uzielli et al. (2007)

Obs. The Most Likely Values of CoV reported in bold are those more frequently assumed in geotechnical engineering design and re-

ports.

Table A2. Types of probabilistic functions commonly suggested to some geotechnical properties (modified from Uzielli et al., 2017).

Geotechnical property Soil type Probabilistic distribution function
Water content All Normal/Log-normal
Liquidity limit All Normal/Log-normal
Plasticity limit Sand/Silt Normal/Log-normal
Void ratio All Normal
Porosity All Normal
Consolidation coefficient c, All Normal/Log-normal
CPT strength Sand Log-normal
Undrained strength Clay Normal/Log-normal
Ratio between undrained strength and ef- Clay Normal/Log-normal
fective principal stress

Cohesion Clay Normal/Log-normal
Unit weight All Normal
Friction angle Sand Normal
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