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Abstract. A numerical model to simulate the mechanical behavior of soils is presented in this first part of the present work.
This paper reports some advances obtained in the first stage of an ongoing research, which aims to develop a robust and
efficient algorithm for consolidation analyses of saturated/unsaturated soils. Hence, the present work is mainly concerned
with basic issues, such as efficiency of the finite element formulation and accuracy of the constitutive formulation. Since
geotechnical materials exhibit elastoplastic characteristics, the theory of plasticity is applied here by means of the critical
state concept using the Cam-Clay formulation. The constitutive equation is integrated using an explicit algorithm where
the strain increment is divided into a number of sub-steps defined automatically by the numerical scheme. Eight-node
hexahedral finite elements with one-point quadrature are employed in the spatial discretization of the geometrical domain.
In order to avoid excitation of spurious modes, an efficient hourglass control is utilized in conjunction with a corotational
formulation, which also contributes to the treatment of geometrical and physical nonlinearities.
Keywords: critical state soil mechanics (CSSM), elastoplasticity, finite element method (FEM), one-point quadrature.

1. Introduction

The use of numerical models to simulate geotechnical
problems has strongly increased in the last decades. This
growth is mainly due to expressive advances obtained in
constitutive modeling of soils and other granular materials
and the great reliability achieved by present numerical
methods, such as the Finite Element Method (FEM). Since
the pioneering works of Coulomb (1776) and Rankine
(1857), the theory of plasticity has been applied to describe
analytically the mechanical behavior of soils, which is en-
tirely justified considering experimental observations that
suggest irreversible behavior for strains, yield phenomena
and shear-induced dilatancy. In this sense, computational
efforts to analyze such problems are usually high, owing to
nonlinear characteristics referring to the material and kine-
matical descriptions of the problem. Therefore, robust
low-order finite element formulations using the one-point
quadrature technique are welcome.

One of the most popular constitutive formulations
based on critical state soil mechanics (CSSM) is the Cam-
Clay model. The original Cam-Clay formulation was pre-
sented by Roscoe & Schofield (1963) and Schofield &
Wroth (1968) using an elastic-plastic constitutive frame-
work. Later, Roscoe & Burland (1968) proposed the Mod-
ified Cam-Clay model, where some drawbacks of the origi-
nal formulation were eliminated. The original Cam-Clay
yield surface presents a discontinuity for isotropic com-
pression stress states, which leads to numerical difficulties

to determine strain increments when an associated flow
rule is employed.

The Modified Cam-Clay model has been widely used
as a constitutive model to describe essential mechanical
properties of clays. The main advantages of the model are
referred to its relative simplicity and ability to represent
strength and deformation characteristics of clays realisti-
cally with a limited number of parameters to be defined. On
the other hand, despite its great popularity, Cam-Clay for-
mulation seems to be inadequate to reproduce very com-
plex soil behavior. Shortcomings associated to the model
are: (a) soils are assumed to be isotropic. It is well known
that natural soils may be anisotropic due to the action of de-
position; (b) time effect on soil deformation is not taken
into account (viscoelastic/plastic behavior is neglected); (c)
failure stress states to the left of the critical state line are
overestimated due to the form adopted for the yield surface;
(d) shear strains are not well predicted within the yield sur-
face because either the shear modulus or the Poisson’s ratio
is assumed to be constant; (e) the behavior of sands cannot
be precisely predicted because sands do not follow exactly
the principle of normality and experimental data show that
the critical state point lies to the left of the peak of the yield
locus; (f) soils under cyclic loading is another problematic
subject because Cam-Clay models estimate large plastic
strains for primary loading but for the remaining unload-
reload cycles within the yield surface only purely elastic
strains are obtained. Experimental evidences show that all
unload-reload cycles result in hysteretic behavior.
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Nevertheless, most of the basic features referring to
mechanical behavior of soils can be covered using the
Cam-Clay model, such as increasing stiffness while the ma-
terial undergoes compression, hardening/softening and
compaction/dilatancy behaviors, and a tendency to reach
the critical state eventually. Moreover, the Basic Barcelona
Model (BBM) by Alonso et al. (1990) utilizes the Cam-
Clay formulation to develop a mathematical model to ana-
lyze unsaturated soil behavior, which is the final goal of the
present research. Some other important critical state mod-
els may be found in Zienkiewicz & Naylor (1973), Carter et
al. (1982), Naylor (1985), Gens & Potts (1988), Pastor &
Zienkiewicz (1990), Crouch et al. (1994), Collins &
Houlsby (1997), Yu (1998), Sheng et al. (2000) and Zhao et
al. (2005).

Numerical procedures to simulate three-dimensional
nonlinear problems lead usually to very time-consuming
algorithms because an iterative process is required in order
to satisfy the mechanical equilibrium. The stiffness matrix
as well as the internal and external force vectors must be
updated regularly and a numerical scheme is needed to inte-
grate the incremental constitutive equation. As models
based on the FEM utilize quadrature techniques to evaluate
element matrices and force vectors numerically, the com-
putational work for each iterative step is multiplied by the
number of quadrature points to perform the numerical inte-
gration. Therefore, element formulations with full integra-
tion have been frequently replaced by one-point quadrature
elements in order to obtain more efficient schemes for
quadrature computations. In this case, hourglass control
techniques are required to avoid excitation of spurious
modes (hourglass modes). A hexahedral element formula-
tion using one-point quadrature and a corotational coordi-
nate system with hourglass control was presented by Hu &
Nagy (1997). More recently, Duarte Filho & Awruch
(2004) extended that formulation to geometrically nonlin-
ear analysis using the model proposed by Liu et al. (1998)
and uniform reduced integration. Numerical investigations
based on the numerical model introduced by Duarte Filho
& Awruch (2004) may be found in Andrade et al. (2007),
Braun & Awruch (2008) and Braun & Awruch (2009). An
application of three-dimensional low-order finite elements
on soil mechanics was previously performed by de Borst &
Groen (1999), but without dealing with reduced integration
techniques.

In a finite element analysis where nonlinear materials
are considered, stress updates are obtained from numerical
integration of the constitutive equation, which is performed
using implicit or explicit algorithms. The main difference
between implicit and explicit integration schemes lies on
how variables are evaluated: at known stress states for ex-
plicit integration methods or at unknown stress states for
implicit ones. From previous investigations (see, for in-
stance, Gens & Potts, 1988; Potts & Ganendra, 1994; Sloan
et al., 2001; Zhao et al., 2005), one verifies that explicit al-

gorithms are more indicated to reproduce complex stress-
strain relations, such as those observed for critical state
models.

In this first part of the present work, the numerical
model presented by Duarte Filho & Awruch (2004) is ex-
tended to cover problems with elastic-plastic constitutive
models, particularly the Modified Cam-Clay model. The
critical state theory for soil mechanics is briefly explained
using the elastoplastic framework to introduce the constitu-
tive relations and a corotational reference system is pre-
sented in order to describe kinematically the motion of the
continuum. A finite element formulation based on reduced
integration for the eight-node hexahedral element is de-
scribed, where stabilization is performed using hourglass
control techniques to avoid numerical instabilities such as
volumetric locking and shear locking. In addition, an ex-
plicit integration scheme, similar to that presented by Sloan
et al. (2001), is adopted in order to update stress states at the
center of the finite elements.

2. Analytical Model for Critical State Soil
Mechanics

Soil materials present a very complex nature where a
multiphase system is usually considered to describe the
mechanical behavior of the soil mass (see Fredlund &
Rahardjo, 1993). The phases observed within the soil vol-
ume are the soil skeleton, or the solid phase, and the pores
or void spaces, which may be filled with gaseous (air
and/or other chemical species) and/or liquid (water and/or
other chemical species) matter. In order to describe the
soil behavior using the theory of continuum mechanics, all
phases are assumed to be continuous and linear such that
all elements may be considered together by superposition.
Momentum, mass and energy balance equations must be
satisfied and a constitutive equation that relates energeti-
cally conjugated stress and strain measures must be also
defined. In soil mechanics, the momentum balance for
each infinitesimal element is described in terms of effec-
tive stresses and in the absence of temperature changes,
the energy conserving equation may be disregarded. A
measure for the stress tensor must be chosen such that the
stress-strain relation maintains its objectivity in the non-
linear range. In this work, the Cauchy stress tensor and the
small strain tensor are utilized, which will be defined in a
corotational reference system.

2.1. Stress-strain relations

In this work, a nonlinear hypoelastic constitutive
equation is considered to relate strain and stress measures
in the elastic regime using a rate form as follows:

� � ( , , )� �ij ijkl
e

kl i, j, k, l� �D 1 2 3 (1)

with:
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where �ij and �ij are components of the Cauchy stress tensor

� and small strain tensor �, Dijkl
e represents components of

the elastic constitutive matrix De and K and G are the bulk
and shear moduli, respectively. For critical state models,
the tangential form of these moduli is usually assumed to be
dependent on the effective mean normal stress p, which are
usually expressed as:
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where �v
e and �d

e are the volumetric and deviatoric parts of

the elastic strain tensor �
e, q is the deviatoric stress, e0 is the

initial voids ratio, vs is the specific volume, � is the Pois-
son’s ratio and k is the slope of the unloading-reloading
lines (URL) on a ln p-v plane (see Schofield & Wroth, 1968
for additional information). It is worth to notice that the
stress dependence on K and G leads to a nonlinear elastic
constitutive matrix De. The secant forms of Eqs. 3 and 4 are
obtained by integrating Eq. 3, which yields:

K
p

v

k
� �

�

�

�

�

�

�

�

�

�

	






�

�




0 1
��

��

v
e

s v
e

exp (5)

and, consequently:
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(6)

where p0 is the effective normal stress at the beginning of
the volumetric strain increment ��v

e .

In the elastoplastic range, a yield function f, a plastic
potential g, a flow rule and a hardening law must be intro-
duced in order to define the elastoplastic formulation (see
Owen & Hinton, 1980). The yield function for the Modified
Cam-Clay model may be written as:

f q M pp pc� � �
2 2 2( ) (7)

where M is the slope of the critical state line and pc is the
preconsolidation pressure, which is related to the maximum
effective pressure experienced by the soil mass. Hence, if a
stress state leads to f < 0, it is assumed to be elastic and if a
stress state leads to f � 0, it is assumed to be plastic (see also
Fig. 1).

Critical state models usually describe rate relations of
volumetric plastic strains and the preconsolidation pressure
according to:

d d dc
s c
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�

(8)

where � is the slope of the normal compression lines (NCL)
on a ln p-v plane (see Schofield & Wroth, 1968 for addi-
tional information) and d� is the plastic multiplier of the
flow rule, which is defined according to the principle of
normality.

The incremental stress-strain equation in the elasto-
platic range may be written as follows:

d dep
� ��D (9)

where:
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where A is a hardening parameter and af and ag are the flow
vectors based on the yield function f and plastic potential g,
respectively. The flow vectors are evaluated using the gen-
eralized formulation presented by Nayak & Zienkiewicz
(1972). By assuming an associative flow rule, where f � g,
ag and af lead to the same result.

2.2. Motion description in the corotational reference
system

For elastoplastic formulations, strain increments are
imposed taking into account the last incremental displace-
ment field obtained from the solution of the equilibrium
equation, considering a generic iterative step. At each itera-
tive step, the respective stress updates are obtained accord-
ing to the material behavior, using either Eq. 1 in the elastic
range or Eq. 9 in the plastic range. Since any motion of a
continuous medium may be decomposed into rigid body

Soils and Rocks, São Paulo, 36(2): 159-169, May-August, 2013. 161

An Efficient Model for Numerical Simulation of the Mechanical Behavior of Soils. Part 1

Figure 1 - Critical state line (CSL) and Cam-Clay yield surfaces
represented on the pxq stress plane.



and deformation motions, assuming that the finite element
discretization is fine enough, the pure deformation portion
of the motion is a small quantity compared with the element
dimensions if the motion decomposition is performed in a
corotational coordinate system. Consequently, the small
strain hypothesis can be considered appropriately.

In order to update strains in the corotational system,
the following expression is adopted:

� � �� � �n 1 n�
� � � (12)

where n + 1 and n indicate initial and final positions of the
time interval [tn, tn+1] and �� is the strain tensor calculated in
the corotational system. The strain increment��� is obtained
using the mid-point integration of the strain rate tensor as
follows:
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where �x n +1 /2 is the geometric configuration of the finite ele-
ment in the corotational system at the mid-point of the time
interval [tn, tn+1] and� �u def is referred to the deformation part
of the total displacement increment � �u in the corotational
system. The total displacement increment � �u is decom-
posed into a part owing to pure deformation � �u def and a
part owing to pure rotation � �u rot , such that
� � �� � �u u u� �

def rot .
The increment of deformation displacements in the

corotational system is obtained using:

� � � �u x xdef
n 1 n� �
�

(14)

where �x n and �x n 1� are geometric configurations of the fi-
nite element in the corotational system at tn and tn+1, respec-
tively (see Fig. 2). The geometric configurations �x n , �x n 1 /2�

and �x n 1� are obtained from the following transformations:

� ;

� ;
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x R X

x R X
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n +1 n +1 n +1
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(15)

where Rn, Rn+1/2 and Rn+1 are orthogonal transformation ma-
trices, performing rotations from the global coordinate sys-
tem to the corotational coordinate system, and xn, xn+1/2 and
xn+1 are geometric configurations defined in the global coor-
dinate system. The subscripts n, n + 1/2 and n + 1 denote
positions in the time interval [tn, tn+1].

The components of the transformation matrix R are
given by:
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(17)

where �, � and xj are vectors containing local nodal coordi-
nates and global nodal coordinates associated to the
eight-node hexahedral element (see Fig. 3), respectively.

Since the local coordinate system rotate attached to
each element in a corotational coordinate system, stress
measures are not affected by rigid motions (objectivity).
Therefore, the Cauchy stress tensor is employed in this
work to calculate stress values in the corotational system.
The Cauchy stress tensor in the global system is obtained
from an objective tensor transformation as follows:

� ��R RT
� (18)

where � and �� are the Cauchy stress tensor evaluated in the
global and corotational coordinate systems, respectively.

On the other hand, stress rate measures are performed
in this work using the Truesdell rate tensor in order to main-
tain objectivity of the stress updates in the corotational sys-
tem:

d dTR T
� � � � � ��� � � � ��� � � �L L I (19)

where I is the unit tensor and

L � �� ���� � (20)

where ��� and ��� are the strain rate tensor and the spin tensor,
respectively, which are evaluated in the corotational sys-
tem.
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Figure 2 - Decomposition of the incremental displacement field
in the corotational system.



It is worth to notice that all geometrical configura-
tions defined above should be referred to the undeformed
configuration of the structure for geometrically linear prob-
lems.

3. The Numerical Model

3.1. Finite element formulation

The principle of the virtual displacements may be ex-
pressed as:

( ) d d dT
E

T
E

T
E

E E E

	 �� � �u u b u t� � �

� � �

� � �� � (21)

where t is the traction vector, �E is the volume referred to
element E and �E represents its boundary surfaces, both
considered in the FEM context.

Spatial coordinates and displacements are approxi-
mated at element level using the eight-node hexahedral fi-
nite element formulation, which may be expressed as:

x Nx u N u u Nu� � �E E E; ;� � (22)

where x, �u and u are the coordinate, virtual displacement
and displacement vectors evaluated within the element do-
main and xE, �uE and uE are their respective nodal values.
The column matrix N contains the shape functions of the
eight-node hexahedral element, which is usually presented
as (see also Fig. 3):

N N N

j

j j
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8
1 1 1 1 2 � 8)
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where �,  and ! represent the axis directions of the local
coordinate system (corotational system) and j denotes the
local node numbers of the hexahedral element.

The equilibrium equation (Eq. 21) must be iteratively
satisfied using the incremental approach, where the stiff-

ness matrix and the internal force vector are considered as
functions of the current element configuration as well as the
current stress state. The Newton-Raphson method is em-
ployed in order to linearize all nonlinearities of the model.
Consequently, the internal force vector is submitted to a
Taylor series expansion within the time interval [tn, tn+1],
which gives:

f f
f

u
u fn +1, i

int
n +1, i -1
int n +1, i -1

int

n +1

n +1,� � �
�

�


 i -1
int

n +1, i -1
tan

�K u
 (24)

where i and i-1 indicate current and previous iterative steps
within the time interval [tn, tn+1] and K n +1, i -1

tan represents the
tangent stiffness matrix.

The tangent stiffness matrix and the internal force
vector are evaluated in the corotational coordinate system
at time instant t and iteration i as follows:

� � ( ) � � ; � � � �

� �

K B D T B f Bn, i
tan T

E n, i
T

i Ed d
E E

� � �� �
� �

� �� (25)

where the gradient matrix �B and �� E are referred to the cur-

rent element configuration in the corotational system, D
and T are fourth order tensors related to the elastic constitu-
tive equation and Truesdell rate terms, repectively, and � i

is the corotational Cauchy stress tensor evaluated at the it-
erative step i (see Braun & Awruch, 2008; Duarte Filho &
Awruch, 2004 for further details). It is important to notice
that T vanishes for geometrically linear problems as well as
D becomes De for elastic materials and Dep for elastoplastic
materials.

In order to solve the equilibrium equation, the tangent
stiffness matrix and the internal force vector are brought
back to the global coordinate system using the following
objective transformations:

K R K R f R ftan tan� �� �
T int T int; (26)
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Figure 3 - Reference systems for the hexahedral finite element.



where R is the transformation matrix defined in Eqs. 16
and 17.

The final matrix format of Eq. 21 in the global sys-
tem, considering the incremental approach, is given as fol-
lows:

K u u f f un +1, i -1
tan

n +1, i n +1
ext

n +1, i -1
int( ) ( ), ,� �� � � (27)

where subscripts n+1 denote current position in the time
marching with i and i-1 indicating current and previous iter-
ative steps in the Newton-Raphson method. The vector of
external forces fext represents the right-hand side terms of
Eq. 21.

3.2. Reduced integration and element stabilization

Element formulations based on reduced integration
must be stabilized using hourglass control techniques in or-
der to avoid numerical instabilities. Volumetric locking, for
instance, is remedied using reduced selective integration,
where the gradient matrix B is decomposed as follows:

B B B( , , ) ( )
~

( , , )�  ! �  !� �0 (28)

where B( )0 corresponds to volumetric terms of the strain
tensor, which is evaluated at the center of the element
(� = 0,  = 0, ! = 0), and

~
( , , )B �  ! is referred to deviatoric

terms of the strain tensor.
In addition,

~
( , , )B �  ! must be expanded using Taylor

series at the center of the element up to bilinear terms. Con-
sequently, Eq. 28 can be re-written as:
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where B(0) is a sum of the volumetric and deviatoric parts
of the gradient matrix, both obtained from one-point quad-
rature.

The vector representation of the stress tensor � is also
submitted to a Taylor series expansion over the center of
the element, which leads to:

� � � � �
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where all the terms above have similar interpretations to
those described in Eq. 29.

By substituting Eqs. 29 and 30 into the left-hand side
term of Eq. 21, considering the relation between strain and
displacement components and the decomposition perfor-
med in Eq. 28, the internal force vector must be re-written
as follows:

f f fint int, int,
� �

0 hg (31)

where fint,0 and fint,hg are the one-point quadrature and hour-
glass control parts of the internal force vector, respectively,
which may be expressed as:
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where Kstab is the element stabilization stiffness matrix and
�E is the volume of the element. Derivatives of the stress
vector are obtained employing the stabilization matrix E
proposed by Hu & Nagy (1997), which leads to a constitu-
tive-like relation between stress and strain derivatives (see
Duarte Filho & Awruch, 2004; Braun & Awruch, 2008).
For elastoplastic behavior, Reese (2005) proposed a modi-
fied stabilization matrix constituted by an optimized stabi-
lization parameter ". In this work, the following procedure
is adopted:
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where A0 is the hardening parameter given by Eq. 11 and
evaluated only at the first yielding of the respective ele-
ment. The stabilization matrix E is obtained using the stabi-
lization parameter " as follows:
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Shear locking is removed describing the shear com-
ponents of the strain tensor in an orthogonal corotational
coordinate system. In addition, all shear components are
linearly interpolated in a single direction of the reference
system as follows:
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which leads to:
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(37)

The internal force vector is not well evaluated for dis-
torted elements if one-point quadrature is used. In order to
correct this deficiency the gradient matrix obtained with re-
duced integration B(0) must be replaced by uniform gradi-
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ent submatrices $Ba ( )0 defined by Flanagan & Belytschko
(1981):

$ � �B Ba

E

a Ed
E

( ) ( , , )0
1

�

�

�

�  ! (38)

where the subscript a corresponds to the local node number
of the element.

It is worth to notice that all equations presented in this
section are implicitly referred to the corotational coordinate
system, although the symbol ^ adopted previously has been
omitted in the respective expressions.

3.3. Integration of the stress-strain relation

In elastoplastic analysis, strain increments are im-
posed at element level based on the incremental solution
obtained from the equilibrium equation. On the other hand,
stress increments are dependent on the material behavior. A
trial elastic stress increment is usually considered as an ini-
tial estimative for the new stress state. If this new stress
state does not lead to plastic yielding, the corresponding
stress increment is taken as true. However, if plastic yield-
ing is observed, the following system of ordinary differen-
tial equations must be solved:

d

d

d

d
ep�

�
T T

B� �D � �;
%

� (39)

with:

T
t t

t A

B
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�
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�
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�

0

�

�� �; ;
a D

a D a
f
T e

f
T e

g

�

� �% �

�

�

(40)

where T is the artificial time, which is defined in the range
0 & T & 1, t0 is the time at the starting point of the load incre-
ment (�t), t is the time in a position within the load incre-
ment (�t) and B is a hardening parameter.

In the remainder of the present section, numerical
procedures to solve the elastoplastic problem are briefly de-
scribed. A step-by-step algorithm of the present numerical
model may be found in Appendix A.

(a) Determination of the elastic trial stress increment

Considering a strain increment �� obtained from the
incremental solution �un+1,i of the equilibrium equation
(Eq. 27) at iteration i, the elastic trial stress increment �� e

is calculated from:

� �� �e e
� D ( , )K G (41)

where De is the secant constitutive matrix, which is defined
using K and G (see Eqs. 5 and 6) owing to the nonlinear
elastic behavior observed in critical state models. It is im-
portant to notice that K and G are evaluated using the stress

state at the starting point of the current strain increment (�0)

and the total volumetric strain increment ��v. For conven-
tional constitutive models, such as the Mohr-Coulomb
yield criterion, these parameters are linear elastic constants
evaluated using classical elastic relations, which leads to
the tangent form of the constitutive matrix De. In this case,
De must be replaced by De in Eq. 41 and hereafter.

(b) Determination of the elastic fraction of the stress
increment

The elastic trial stress increment �� e is now utilized
to check the yield function (Eq. 7) with the corresponding
trial stress state ( )� �0 � �

e . If no plastic yielding occurs
( ( , ) )f � �0 0 0� '�

e
% , the stress state is updated according

to the trial stress state. On the other hand, if the trial stress
state causes plastic yielding, the following alternatives
must be considered (see also Fig. 4):

1) if f ( , )� 0 0 0% ' and f ( , )� �0 0 0� (�
e
% : the stress

state has changed from elastic to plastic. The elastic

fraction of the total strain increment �� must be deter-

mined in order to advance the initial stress state �0 to

the stress state on the yield surface �yld;

2) if f ( , )� 0 0 0% � and f ( , )� �0 0 0� (�
e
% : the stress

state is initially lying on the yield surface and the trial
stress state causes plastic yielding. In this case, elasto-
plastic unloading may occur, which is observed if the
angle ) between the flow vector a0 and the tangential

elastic increment ��
e(K,G) is larger than 90º. The an-

gle ) may be calculated using:

cos ) �
a

a
0

0

T e

e

�

�

�

�
(42)

where a0 is evaluated at the initial stress state �0 and ��
e is

evaluated using the incremental form of Eq. 1. If no elasto-

plastic unloading occurs, the strain increment �� is as-
sumed to be totally plastic. Nevertheless, if the elastoplastic
unloading conditions are satisfied, the elastic fraction of the

total strain increment �� must be determined.

The stress state on the yield surface �yld may be deter-
mined considering the following nonlinear equation:

f ,( )� �0 0 0� �* %D e
� (43)

where * is a scalar to be determined in order to satisfy
Eq. 43. The secant constitutive matrix De is evaluated using

the initial stress �0 and the strain increment *��. If * = 0,

the strain increment �� is assumed to be totally plastic and

if * = 1, the strain increment �� is assumed to be totally
elastic. Elastic to plastic transition is characterized by
0 < * < 1, where the elastic fraction of the total strain incre-

ment �� is given by *��. In order to solve Eq. 43, the Pega-
sus algorithm introduced by Dowell & Jarratt (1972) is
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adopted in the present work (see Appendix B for a detailed
description).

(c) Integration of the stress-strain equation:
Once the elastic fraction of the stress increment is ob-

tained from the Pegasus algorithm, the plastic fraction of
the strain increment � $� is determined using:

� �$ � �� �( )1 * (44)

In order to define initial conditions for the system of

equations described by Eq. 39, the stress state �0 is updated

to the stress state at the onset of the plastic yielding �yld and
the hardening parameter %0 is considered at the start of the
strain increment � $� where T = 0 and t = t0. By using the ex-
plicit Euler method, a substepping technique, as proposed
by Sloan et al. (2001), is performed over the strain incre-
ment � $� to find the stress state and the hardening parame-
ter at the end of � $� , where T = 1. Subincrements of � $� are
defined according to the artificial time increment�T, which
is calculated taking into account a local error measure ob-
tained by the difference between a second order accurate
modified Euler solution and a first order accurate Euler so-
lution. Consequently, the size of the subincrements is auto-
matically modified along the integration process.

In the explicit Euler method, stress state �n and hard-
ening parameter %n at the end of an artificial time increment
�Tn are obtained as follows:

� � �n n -1 1 n n -1 1� � � �� �; % % % (45)

with:

� �� � �1
e

n -1 n -1 n� $D ( , )% (46)

� �� + �% %1 �
$( , ) ( )� � �n -1 n -1 n n -1B (47)

� � � �$ � $ & &� �n n nT T( )0 1 (48)

where n-1 and n are referred to previous and current artifi-
cial time positions Tn-1 and Tn, respectively, such that
Tn = Tn-1 + �Tn.

In the modified Euler method, stress state �n and
hardening parameter %n at the end of an artificial time incre-
ment �Tn are obtained as follows:

� � � �n n-1 1 2 n n-1 1 2� � � � � �
1

2

1

2
( );� � ,� � -% % % % (49)

where��1 and�%1 are calculated with Eqs. 46 and 47 and:

� � � �� � � �2
e

n -1 1 n -1 1 n� � � $D ( , )% % (50)

� � � � �
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% � % %2 1 1 1

1 1
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n n 1 n

nB
(51)

The relative local error measures over �n and %n are
estimated from:
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(52)

where the Euclidian norm � n and the absolute value % n

are calculated using Eq. 49.
The current subincrement � $� is accepted if both the

errors given by Eq. 52 are less than a prescribed tolerance
value. The next artificial time increment �Tn+1 is obtained
taking into account the relative errors of the current artifi-
cial time Tn, which permits the size of the subincrements to
vary during the integration process. At the end of each
subincrement, corrections in the stress state and hardening
parameter may be needed in order to satisfy the yield condi-

166 Soils and Rocks, São Paulo, 36(2): 159-169, May-August, 2013.

Braun & Awruch
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tion accurately and avoid yield surface drift. The integra-
tion process is carried on until the plastic increment � $� is
completely applied, i.e. Tn = 1. Suitable tolerance values for
all the iterative procedures utilized in the present scheme
are found in Sloan et al. (2001), where a sensitive analysis
is presented in order to investigate the influence of the tol-
erance values over the numerical predictions.

For a complete description of the numerical model
adopted in this work, readers are addressed to the algorithm
presented in Appendix A.

4. Conclusions
A numerical model based on one-point quadrature

and critical state formulation was proposed in this work to
simulate the mechanical behavior of soils. The critical state
formulation was briefly described using a classical elasto-
plastic approach where the Modified Cam-Clay model was
emphasized. The finite element implementation of the ana-
lytical model was performed using the eight-node hexahe-
dral element formulation and reduced integration tech-
niques. A corotational reference system was utilized to
stabilize the element formulation as well as to describe
stress-strain relations and motion, especially for geometri-
cally nonlinear analysis. The constitutive equation was in-
tegrated in this paper using an explicit algorithm with an
automatic procedure to split the strain increment into a
number of subincrements. Numerical algorithms to deter-
mine the yield intersection point, to handle elastoplastic
unloading and to restore uncorrected stresses to the yield
surface were also presented. One can observe that the for-
mulation presented here leads to a highly efficient numeri-
cal model, especially for nonlinear analysis, where the
computational effort is substantially reduced when com-
pared to other formulations employing standard approa-
ches. In future works, following this on-going research, the
present formulation will be extended to analyze the me-
chanical behavior of saturated/unsaturated soils.

Appendix A
All numerical procedures adopted in this work may

be summarized according to the following algorithm:

Initialization procedures

– Read input data (algorithmic parameters, physical con-
stants and mesh configuration)

– Evaluate the transformation matrix R and the gradient
matrix B at element level considering the initial geomet-
ric configuration in the corotational system. For geomet-
rically linear problems, those matrices will be main-
tained throughout the analysis.

– Evaluate the internal force vector fint considering the im-
posed initial stress state.

Time loop: tn+1 = tn + �t (where �t defines the load step)

– Evaluate the external force vector fext at the current time
tn+1: f f fn 1

ext
n
ext ext

�
� � � .

Iterative loop: i = i + 1

1) For geometrically nonlinear problems, update the gra-
dient matrix B and the transformation matrix R at ele-
ment level considering the current geometric configu-
ration in the corotational system and evaluate the
Truesdell rate tensor T, which must be added to the
constitutive matrix D.

2) Evaluate the tangent constitutive matrix D: in the elas-
tic regime, consider D = De; in the plastic regime, con-
sider D = Dep.

3) Evaluate the tangent stiffness matrix Ktan in the coro-
tational system including the element stabilization
terms.

4) Solve the equilibrium equation in the global system:
K u u f f un +1, i -1

tan
n +1, i n 1

ext
n +1, i -1
int( , ) ( , )� �� � �

�
.

5) For geometrically nonlinear problems, determine the
intermediate geometric configuration xn+1/2 based on
the last incremental solution �u n +1, i .

6) Determine the strain increment �� in the corotational
system using the incremental solution �u n +1, i . For
geometrically nonlinear problems, the transformation
matrix R and the gradient matrix B adopted in the
evaluation of the strain increment must be updated
considering the intermediate geometric configuration
xn+1/2 in the corotational system.

7) Determine the trial stress state using the elastic trial
stress increment:
� � �� � � � �e e e e

� / � �D ( , )K G 0

8) Check the yield function: f ( , )� e
% 0

9) If f ( , )� e
% 0 0' / totally elastic stress state transi-

tion: set � = �
e and go to step 11.

If f ( , )� e
% 0 0� / verify the following alternatives:

• If f ( , )� 0 0 0% ' and f ( , )� e
% 0 0� : elastic to plastic

transition; determine the elastic fraction of �� using
the Pegasus scheme.

• If f ( , )� 0 0 0% � and f ( , )� e
% 0 0( : check if elasto-

plastic unloading occurs by computing

cos ) �
a

a
0

0

T
e

e

�

�

�

�
. For cos) � 0, the stress increment

is totally plastic; otherwise, determine the elastic

fraction of �� using the Pegasus scheme for elasto-
plastic unloading.

10) Update the stress state �0 to the stress state at the onset

of the plastic yielding �yld; determine the plastic frac-
tion of the strain increment using � �$ � �� �( )1 * .

Substepping loop: Tn = Tn-1 + �Tn

a) Compute the increments of stress and hardening pa-
rameter employing: � �� � �1 1 1� $

� �
D ep

n n n( , )% ;
� �� �% %1 1 1 1� $

� � �
( , , ) ( )� � �n n n nB .

b) Update the stress state and the hardening parameter
using the explicit Euler method.
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c) Compute the increments of stress and hardening pa-
rameter employing:

� � � �� � � �2 1 1 1 1� � � $
� �

D ep
n n n( , )% % and

� �� � � � �% % %2 1 1 1 1 1 1� � � $ �
� � �

( , , ) ( )� � � � �n n n nB .
d) Update the stress state and the hardening parameter

using the modified Euler method.

e) Compute the relative errors over �n and %n and decide
if the current subincrement is successful or not.

f) For accepted subincrements, check the yield function:
if f ( , )� n n% 0 0 then correct the stress state and the
hardening parameter to satisfy the yield condition pre-
cisely.

End of substepping loop (Tn = 1)

11) Update the stress state and the hardening parameter at

the end of the strain increment ��.
12) For geometrically nonlinear problems, determine the

final geometric configuration xn+1 based on the last in-
cremental solution �un+1,i and update the gradient ma-
trix B and the transformation matrix R at element level
considering xn+1 in the corotational system.

13) Compute the internal force vector considering the last
updated stress state.

14) Verify convergence of the current load step.

End of iterative loop

End of time loop

Appendix B

The Pegasus algorithm utilized in this work may be
described as follows:

1) Retain the stress state �0 and the hardening parameter

%0 evaluated at the start of the strain increment ��.
2) Set *0 = 0 and *1 = 1.
3) Determine an elastic trial stress increment using

� �� �e e
� *1 D , where D De e

0 v� ( , , )� �*1 � .
4) Evaluate the yield function at the start and the end of

the trial stress increment as follows: F 00 0� f ( , )� %

and F 0
e

1 0� �f ( , )� �� % .

Iterative loop: i = i + 1

a) Calculate * *
* *

� �
�

�
1 1

1 0

1 0

F
F F

.

b) Determine a new elastic trial stress increment using
� �� �e e

� *D , where D De e
0 v� ( , )� �*� .

c) Evaluate the yield function based on the last trial stress
increment as follows: FN 0

e
� �f ( , )� �� % 0 .

d) If FN TOL& then leave the iterative loop retaining
the last evaluation of *, else go to the next step of the
iterative loop. TOL is referred to a tolerance criterion
adopted to define the convergence of the numerical
procedure.

e) If FN presents an opposite sign to F0, set *1 = * and

F1 = FN, otherwise update F1 using F
F F

F FN

1
1 0

0

� and set

*0 = * with F0 = FN.

End of iterative loop

Exit with �.

For elastoplastic unloading, different values must be
considered for*0 and*1 to initiate the iterative procedure in
order to ensure that the Pegasus algorithm finds the inter-
section point on the yield surface precisely. Therefore, *0

and *1 should satisfy the following conditions:
f ( , )� �0

e TOL� ' �* %0 0D � and
f ( , )� �0

e TOL� (* %1 0D � .
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